結果

問題 No.1216 灯籠流し/Lanterns
ユーザー heno239
提出日時 2020-08-30 17:17:01
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,143 ms / 4,500 ms
コード長 9,668 bytes
コンパイル時間 2,984 ms
コンパイル使用メモリ 170,392 KB
実行使用メモリ 44,592 KB
最終ジャッジ日時 2024-11-15 13:22:23
合計ジャッジ時間 21,002 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 48
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);
ll mod_pow(ll x, ll n, ll m = mod) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1000;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
int gcd(int a, int b) {
if (a < b)swap(a, b);
while (b) {
int r = a % b; a = b; b = r;
}
return a;
}
struct SegT {
private:
int sz; vector<vector<ll>> node,lazy;
public:
SegT(int n) {
sz = 1;
while (sz < n)sz *= 2;
node.resize(2 * sz - 1);
lazy.resize(2 * sz - 1);
}
void add(ll x, int a, int b, int k = 0, int l = 0, int r = -1) {
if (r < 0)r = sz;
if (r <= a || b <= l)return;
else if (a <= l && r <= b) {
lazy[k].push_back(x);
}
else {
add(x,a, b, k * 2 + 1, l, (l + r) / 2);
add(x,a, b, k * 2 + 2, (l + r) / 2, r);
}
}
int query(int loc, ll x) {
int res = 0;
int k = loc + sz - 1;
res += upper_bound(all(node[k]),x)-node[k].begin();
while (k > 0) {
k = (k - 1) / 2;
res += upper_bound(all(node[k]), x) - node[k].begin();
}
return res;
}
void all_clean() {
rep(k, 2 * sz - 1) {
if (lazy[k].size()) {
sort(all(lazy[k]));
int id0 = 0, id1 = 0;
vector<ll> nex(node[k].size() + lazy[k].size());
while (id0 < node[k].size() || id1 < lazy[k].size()) {
if (id0 == node[k].size()) {
nex[id0 + id1] = lazy[k][id1]; id1++;
}
else if (id1 == lazy[k].size()) {
nex[id0 + id1] = node[k][id0]; id0++;
}
else {
if (node[k][id0] < lazy[k][id1]) {
nex[id0 + id1] = node[k][id0]; id0++;
}
else {
nex[id0 + id1] = lazy[k][id1]; id1++;
}
}
}
swap(nex, node[k]);
lazy[k].clear();
}
}
}
};
struct edge {
int to;
};
using edges = vector<edge>;
using Graph = vector<edges>;
struct HLDecomposition {
struct Chain {
int depth;
P parent;//chain number,index
vector<P> child;//child chain number,parent index
vector<int> mapfrom;
SegT stree;
//Chain() { ; }
Chain(int n) :stree(n) { ; }
};
Graph baseG;
vector<Chain> chains;
vector<P> mapto;//raw index->chain number &index
vector<vector<int>> mapfrom;//chain number & index ->raw index
HLDecomposition() { ; }
HLDecomposition(const Graph& g) {
baseG = g;
const int n = baseG.size();
mapto = vector<P>(n, P{ -1,-1 });
mapfrom.clear();
vector<int> sz(n, 0);
int start = -1;
rep(i, n)if (baseG[i].size() <= 1) { start = i; break; }
//assert(start != -1);
size_check_bfs(start, sz);
decomposition(start, start, 0, 0, 0, sz);
}
int depth(int t) {
return chains[mapto[t].first].depth;
}
private:
void size_check_bfs(int start, vector<int>& sz) {
const int n = baseG.size();
queue<P> que;
que.push({ start,start });
int cnt = 0; vector<int> ord(n, -1);
while (!que.empty()) {
int from, parent;
tie(from, parent) = que.front(); que.pop();
ord[cnt++] = from;
for (edge e : baseG[from]) {
if (e.to == parent)continue;
que.push({ e.to,from });
}
}
//assert(cnt == n);
reverse(all(ord));
rep(i, n) {
int from = ord[i];
sz[from] = 1; for (edge e : baseG[from])sz[from] += sz[e.to];
}
}
int decomposition(int from, int parent, int depth, int pnumber, int pindex, const vector<int>& sz) {
vector<int> seq;
bfs(from, parent, seq, sz);
const int c = chains.size();
chains.push_back(Chain((int)seq.size()));
//chains.push_back(Chain());
chains[c].depth = depth;
chains[c].parent = { pnumber,pindex };
rep(i, seq.size()) {
mapto[seq[i]] = { c,i };
chains[c].mapfrom.push_back(seq[i]);
}
mapfrom.push_back(chains[c].mapfrom);
rep(i, seq.size()) {
for (edge e : baseG[seq[i]]) {
if (mapto[e.to].first != -1)continue;
int nc = decomposition(e.to, seq[i], depth + 1, c, i, sz);
chains[c].child.push_back({ nc,i });
}
}
return c;
}
void bfs(int from, int parent, vector<int>& seq, const vector<int>& sz) {
for (;;) {
seq.push_back(from);
int best = -1, next = -1;
for (edge e : baseG[from]) {
if (e.to == parent)continue;
if (best < sz[e.to]) {
best = sz[e.to]; next = e.to;
}
}
if (next == -1)break;
parent = from; from = next;
}
}
vector<pair<int, P>> all_vertice(int u, int v) {
vector<pair<int, P>> res;
if (depth(u) > depth(v))swap(u, v);
while (depth(v) > depth(u)) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
}
while (mapto[v].first != mapto[u].first) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
res.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } });
par = chains[mapto[u].first].parent;
u = mapfrom[par.first][par.second];
}
P p = minmax(mapto[v].second, mapto[u].second);
res.push_back({ mapto[v].first,{ p.first,p.second + 1 } });
return res;
}
public:
void vertice_add(int u, int v, ll a) {
vector<pair<int, P>> vs = all_vertice(u, v);
rep(i, vs.size()) {
int id = vs[i].first;
int l = vs[i].second.first; int r = vs[i].second.second;
chains[id].stree.add(a, l, r);
}
}
void all_clean() {
rep(i, chains.size()) {
chains[i].stree.all_clean();
}
}
int query(int v,ll x) {
int id = mapto[v].first, loc = mapto[v].second;
return chains[id].stree.query(loc, x);
}
};
int par[1 << 16][16];
int depth[1 << 16];
ll parcost[1 << 16];
const int b = 600;
struct edge2 {
int to;ll cost;
};
vector<edge2> G[50000];
void dfs(int id, int fr) {
par[id][0] = fr;
for (edge2 e : G[id])if (e.to != fr) {
parcost[e.to] = parcost[id] + e.cost;
depth[e.to] = depth[id] + 1;
dfs(e.to, id);
}
}
bool is_in(int a, int p, int v) {
if (depth[a] < depth[p] || depth[v] < depth[a])return false;
int d = depth[v] - depth[a];
rep(j, 16)if (d & (1 << j)) {
v = par[v][j];
}
return a == v;
}
void solve() {
int n, q; cin >> n >> q;
Graph g(n);
rep(i, n - 1) {
int a, b; ll c; cin >> a >> b >> c; a--; b--;
G[a].push_back({ b,c });
G[b].push_back({ a,c });
g[a].push_back({ b });
g[b].push_back({ a });
}
HLDecomposition hld(g);
dfs(0, -1);
rep(j, 15)rep(i, n) {
if (par[i][j] < 0)par[i][j + 1] = -1;
else {
par[i][j + 1] = par[par[i][j]][j];
}
}
vector<int> typ(q), v(q);
vector<ll> t(q), l(q);
rep(i, q) {
cin >> typ[i] >> v[i] >> t[i] >> l[i];
v[i]--;
t[i] += parcost[v[i]];
}
vector<int> ans(q);
int d = (q + b - 1) / b;
vector<int> memo(q);
rep(i, d) {
int le = b * i;
int ri = min(q, b * (i + 1));
Rep(j, le, ri) {
if (typ[j] == 0) {
int cur = v[j];
ll rest = l[j];
per(j, 16) {
int p = par[cur][j];
if (p >= 0 && parcost[cur] - parcost[p] <= rest) {
rest -= parcost[cur] - parcost[p];
cur = p;
}
}
memo[j] = cur;
hld.vertice_add(v[j], cur, t[j]);
}
else {
ans[j] = hld.query(v[j], t[j]);
for (int k = le; k < j; k++)if (typ[k] == 0) {
if (is_in(v[j], memo[k], v[k])) {
//cout << "hi! " << j << " " << k << "\n";
if (t[j] >= t[k])ans[j]++;
}
}
}
}
hld.all_clean();
}
rep(i, q)if (typ[i] == 1)cout << ans[i] << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(15);
//init_f();
//init();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0