結果

問題 No.1215 都市消滅ビーム
ユーザー ei1333333
提出日時 2020-08-30 17:49:22
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 13,917 bytes
コンパイル時間 24,790 ms
コンパイル使用メモリ 357,888 KB
最終ジャッジ日時 2025-01-14 01:50:51
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 38 TLE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
//const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
template< typename T = int >
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template< typename T = int >
struct Graph {
vector< vector< Edge< T > > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const {
return g.size();
}
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
for(int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if(weighted) cin >> c;
if(directed) add_directed_edge(a, b, c);
else add_edge(a, b, c);
}
}
};
template< typename T = int >
using Edges = vector< Edge< T > >;
/**
* @brief Heavy-Light-Decomposition(HL)
* @see https://smijake3.hatenablog.com/entry/2019/09/15/200200
*/
template< typename T = int >
struct HeavyLightDecomposition : Graph< T > {
public:
using Graph< T >::Graph;
using Graph< T >::g;
vector< int > sz, in, out, head, rev, par, dep;
void build() {
sz.assign(g.size(), 0);
in.assign(g.size(), 0);
out.assign(g.size(), 0);
head.assign(g.size(), 0);
rev.assign(g.size(), 0);
par.assign(g.size(), 0);
dep.assign(g.size(), 0);
dfs_sz(0, -1, 0);
int t = 0;
dfs_hld(0, -1, t);
}
/* k: 0-indexed */
int la(int v, int k) {
while(1) {
int u = head[v];
if(in[v] - k >= in[u]) return rev[in[v] - k];
k -= in[v] - in[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) swap(u, v);
if(head[u] == head[v]) return u;
}
}
int dist(int u, int v) const {
return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}
template< typename E, typename Q, typename F, typename S >
E query(int u, int v, const E &ti, const Q &q, const F &f, const S &s, bool edge = false) {
E l = ti, r = ti;
for(;; v = par[head[v]]) {
if(in[u] > in[v]) swap(u, v), swap(l, r);
if(head[u] == head[v]) break;
l = f(q(in[head[v]], in[v] + 1), l);
}
return s(f(q(in[u] + edge, in[v] + 1), l), r);
}
template< typename E, typename Q, typename F >
E query(int u, int v, const E &ti, const Q &q, const F &f, bool edge = false) {
return query(u, v, ti, q, f, f, edge);
}
template< typename Q >
void add(int u, int v, const Q &q, bool edge = false) {
for(;; v = par[head[v]]) {
if(in[u] > in[v]) swap(u, v);
if(head[u] == head[v]) break;
q(in[head[v]], in[v] + 1);
}
q(in[u] + edge, in[v] + 1);
}
/* {parent, child} */
vector< pair< int, int > > compress(vector< int > &remark) {
auto cmp = [&](int a, int b) { return in[a] < in[b]; };
sort(begin(remark), end(remark), cmp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
int K = (int) remark.size();
for(int k = 1; k < K; k++) remark.emplace_back(lca(remark[k - 1], remark[k]));
sort(begin(remark), end(remark), cmp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
vector< pair< int, int > > es;
stack< int > st;
for(auto &k : remark) {
while(!st.empty() && out[st.top()] <= in[k]) st.pop();
if(!st.empty()) es.emplace_back(st.top(), k);
st.emplace(k);
}
return es;
}
explicit HeavyLightDecomposition(const Graph< T > &g) : Graph< T >(g) {}
private:
void dfs_sz(int idx, int p, int d) {
dep[idx] = d;
par[idx] = p;
sz[idx] = 1;
if(g[idx].size() && g[idx][0] == p) swap(g[idx][0], g[idx].back());
for(auto &to : g[idx]) {
if(to == p) continue;
dfs_sz(to, idx, d + 1);
sz[idx] += sz[to];
if(sz[g[idx][0]] < sz[to]) swap(g[idx][0], to);
}
}
void dfs_hld(int idx, int p, int &times) {
in[idx] = times++;
rev[in[idx]] = idx;
for(auto &to : g[idx]) {
if(to == p) continue;
head[to] = (g[idx][0] == to ? head[idx] : to);
dfs_hld(to, idx, times);
}
out[idx] = times;
}
};
/**
* @brief Binary-Indexed-Tree(BIT)
* @docs docs/binary-indexed-tree.md
*/
template< typename T >
struct BinaryIndexedTree {
vector< T > data;
BinaryIndexedTree() = default;
explicit BinaryIndexedTree(size_t sz) : data(sz + 1, 0) {}
explicit BinaryIndexedTree(const vector< T > &vs) : data(vs.size() + 1, 0) {
for(size_t i = 0; i < vs.size(); i++) data[i + 1] = vs[i];
for(size_t i = 1; i < data.size(); i++) {
size_t j = i + (i & -i);
if(j < data.size()) data[j] += data[i];
}
}
void add(int k, const T &x) {
for(++k; k < (int) data.size(); k += k & -k) data[k] += x;
}
T query(int k) const {
T ret = T();
for(++k; k > 0; k -= k & -k) ret += data[k];
return ret;
}
int lower_bound(T x) const {
int i = 0;
for(int k = 1 << (__lg(data.size() - 1) + 1); k > 0; k >>= 1) {
if(i + k < data.size() && data[i + k] < x) {
x -= data[i + k];
i += k;
}
}
return i;
}
int upper_bound(T x) const {
int i = 0;
for(int k = 1 << (__lg(data.size() - 1) + 1); k > 0; k >>= 1) {
if(i + k < data.size() && data[i + k] <= x) {
x -= data[i + k];
i += k;
}
}
return i;
}
};
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
using pi = pair< int64, int64 >;
using Tree = tree< pi, null_type, less<>, rb_tree_tag, tree_order_statistics_node_update >;
int main() {
int N, K;
cin >> N >> K;
vector< int > C(K), D(K);
cin >> C >> D;
for(auto &c: C) --c;
HeavyLightDecomposition< int > g(N);
g.read(N - 1);
g.build();
vector< int > latte(K);
vector< int64 > sum_latte(K);
latte[0] = C[0];
sum_latte[0] = D[0];
for(int i = 1; i < K; i++) {
latte[i] = g.lca(latte[i - 1], C[i]);
sum_latte[i] = sum_latte[i - 1] + D[i];
}
vector< int > malta(K);
vector< int64 > sum_malta(K);
malta[K - 1] = C[K - 1];
sum_malta[K - 1] = D[K - 1];
for(int i = K - 2; i >= 0; i--) {
malta[i] = g.lca(malta[i + 1], C[i]);
sum_malta[i] = sum_malta[i + 1] + D[i];
}
auto check2 = [&](int64 val) {
int64 ret = 1;
ret += sum_latte.back() <= val;
Tree tree;
tree.insert(make_pair(0, -1));
for(int right = 0; right < K; right++) {
ret += tree.order_of_key(make_pair(val - sum_latte.back() + sum_latte[right], inf));
tree.insert(make_pair(sum_latte[right], right));
}
return ret;
};
int64 pre_ok = infll / 100, pre_ng = -infll / 100; //
while(pre_ok - pre_ng > 1) {
int64 pre_mid = (pre_ok + pre_ng) / 2;
if(check2(pre_mid) >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) pre_ok = pre_mid;
else pre_ng = pre_mid;
}
vector< int > dep(N);
auto make = MFP([&](auto make, int idx, int par) -> void {
if(~par) dep[idx] = dep[par] + 1;
for(auto &to : g.g[idx]) {
if(to != par) make(to, idx);
}
});
make(0, -1);
int64 vt = dep[latte.back()] + sum_latte.back();
vector< int > id(N);
auto check = [&](int64 ck) {
int64 ret = 0;
auto rec = MFP([&](auto rec, int left, int right) -> void {
if(ret >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) return;
if(left + 1 >= right) {
int lca1 = left == 0 ? -1 : latte[left - 1];
int lca2 = right == K ? -1 : malta[right];
int lca = lca1 == -1 ? lca2 : (lca2 == -1 ? lca1 : g.lca(lca1, lca2));
int64 sum1 = left == 0 ? 0 : sum_latte[left - 1];
int64 sum2 = right == K ? 0 : sum_malta[right];
if(dep[lca] + sum1 + sum2 <= ck) ++ret;
return;
}
int mid = (left + right) / 2;
rec(left, mid);
if(ret >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) return;
rec(mid, right);
if(ret >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) return;
// [left, mid) -> [mid, right)
vector< int > vs{0};
for(int k = left; k < mid; k++) {
int lca = k == 0 ? -1 : latte[k - 1];
if(~lca) vs.emplace_back(lca);
}
for(int k = mid; k < right; k++) {
int lca = k + 1 == K ? -1 : malta[k + 1];
if(~lca) vs.emplace_back(lca);
}
sort(begin(vs), end(vs));
vs.erase(unique(begin(vs), end(vs)), end(vs));
auto es = g.compress(vs);
int ptr = 0;
for(auto &p : es) id[p.first] = -1;
for(auto &p : es) id[p.second] = -1;
id[0] = ptr++;
vector< int > rev{0};
for(auto &p : es) {
if(id[p.first] == -1) {
id[p.first] = ptr++;
rev.emplace_back(p.first);
}
if(id[p.second] == -1) {
id[p.second] = ptr++;
rev.emplace_back(p.second);
}
}
vector< vector< int > > subg(rev.size());
for(auto &p : es) {
subg[id[p.first]].emplace_back(id[p.second]);
}
vector< Tree > tap(rev.size()), ris(rev.size());
vector< int64 > x, y;
for(int k = left; k < mid; k++) {
int lca = k == 0 ? -1 : latte[k - 1];
int64 sum = k == 0 ? 0 : sum_latte[k - 1];
if(~lca) tap[id[lca]].insert({sum, k});
else x.emplace_back(sum);
}
for(int k = mid; k < right; k++) {
int lca = k + 1 == K ? -1 : malta[k + 1];
int64 sum = k + 1 == K ? 0 : sum_malta[k + 1];
if(~lca) ris[id[lca]].insert({sum, k});
else y.emplace_back(sum);
}
sort(begin(x), end(x));
sort(begin(y), end(y));
auto dfs = MFP([&](auto dfs, int idx) -> void {
for(auto &val : tap[idx]) {
ret += upper_bound(begin(y), end(y), ck - val.first - dep[rev[idx]]) - begin(y);
}
for(auto &val : ris[idx]) {
ret += upper_bound(begin(x), end(x), ck - val.first - dep[rev[idx]]) - begin(x);
}
for(auto &val : tap[idx]) {
ret += ris[idx].order_of_key(make_pair(ck - val.first - dep[rev[idx]], inf));
}
for(auto &to : subg[idx]) {
dfs(to);
if(tap[to].size() < ris[idx].size()) {
for(auto &val : tap[to]) {
ret += ris[idx].order_of_key(make_pair(ck - val.first - dep[rev[idx]], inf));
}
} else {
for(auto &val : ris[idx]) {
ret += tap[to].order_of_key(make_pair(ck - val.first - dep[rev[idx]], inf));
}
}
if(ris[to].size() < tap[idx].size()) {
for(auto &val : ris[to]) {
ret += tap[idx].order_of_key(make_pair(ck - val.first - dep[rev[idx]], inf));
}
} else {
for(auto &val : tap[idx]) {
ret += ris[to].order_of_key(make_pair(ck - val.first - dep[rev[idx]], inf));
}
}
if(ret >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) return;
if(tap[to].size() > tap[idx].size()) tap[idx].swap(tap[to]);
if(ris[to].size() > ris[idx].size()) ris[idx].swap(ris[to]);
for(auto &p : tap[to]) tap[idx].insert(p);
for(auto &p : ris[to]) ris[idx].insert(p);
tap[to].clear();
ris[to].clear();
}
if(ret >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) return;
});
dfs(0);
});
rec(0, K);
ret += vt <= ck;
return ret + 1;
};
int64 ok = pre_ok + *max_element(begin(dep), end(dep)), ng = pre_ok - 1;
if(N < 5050) ok = infll / 100, ng = -infll / 100;
while(ok - ng > 1) {
int64 mid = (ok + ng) / 2;
if(check(mid) >= ((1LL * K * (K + 1) / 2 + 1) + 1) / 2) ok = mid;
else ng = mid;
}
cout << ok << "\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0