結果
| 問題 |
No.1215 都市消滅ビーム
|
| コンテスト | |
| ユーザー |
heno239
|
| 提出日時 | 2020-08-30 21:54:25 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,335 ms / 6,000 ms |
| コード長 | 7,034 bytes |
| コンパイル時間 | 1,967 ms |
| コンパイル使用メモリ | 144,492 KB |
| 実行使用メモリ | 39,856 KB |
| 最終ジャッジ日時 | 2024-11-15 15:34:45 |
| 合計ジャッジ時間 | 16,134 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 40 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);
ll mod_pow(ll x, ll n, ll m = mod) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1000;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
int gcd(int a, int b) {
if (a < b)swap(a, b);
while (b) {
int r = a % b; a = b; b = r;
}
return a;
}
struct lcagraph {
private:
int n;
vector<vector<int>> G;
vector<vector<int>> parent;
vector<int> depth;
int root;
int tmp;
public:
lcagraph(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
lcagraph() {}
void init(int n_) {
n = n_;
G.resize(n);
parent.resize(n);
depth.resize(n);
tmp = 0;
int cop = n;
while (cop) {
tmp++; cop /= 2;
}
rep(i, n)parent[i].resize(tmp);
root = 0;
}
void add_edge(int a, int b) {
G[a].push_back(b);
G[b].push_back(a);
}
void dfs(int id, int fr, int d) {
parent[id][0] = fr;
depth[id] = d;
rep(j, G[id].size()) {
int to = G[id][j];
if (to == fr)continue;
dfs(to, id, d + 1);
}
}
void complete(int r = 0) {
root = r;
dfs(root, -1, 0);
rep(j, tmp - 1)rep(i, n) {
if (parent[i][j] < 0)parent[i][j + 1] = -1;
else parent[i][j + 1] = parent[parent[i][j]][j];
}
}
int lca(int u, int v) {
if (depth[u] > depth[v])swap(u, v);
for (int k = 0; k < tmp; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[v][k];
}
}
if (u == v)return u;
for (int k = tmp - 1; k >= 0; k--) {
if (parent[u][k] != parent[v][k]) {
u = parent[u][k];
v = parent[v][k];
}
}
return parent[u][0];
}
int dep(int x) {
return depth[x];
}
int dist(int x, int y) {
int l = lca(x, y);
return depth[x] + depth[y] - 2 * depth[l];
}
};
struct BIT {
private:
vector<ll> node; int n;
public:
BIT(int n_) {
n = n_; node.resize(n, 0);
}
//0-indexed
void add(int a, ll w) {
for (int i = a; i < n; i |= i + 1)node[i] += w;
}
//[0,a)
ll sum(int a) {
ll ret = 0;
for (int i = a - 1; i >= 0; i = (i & (i + 1)) - 1)ret += node[i];
return ret;
}
//[a,b)
ll sum(int a, int b) {
return sum(b) - sum(a);
}
};
void solve() {
int n, k; cin >> n >> k;
vector<vector<int>> G(n);
vector<int> c(k); rep(i, k) {
cin >> c[i]; c[i]--;
}
vector<ll> d(k); rep(i, k)cin >> d[i];
lcagraph lg(n);
rep(i, n - 1) {
int a, b; cin >> a >> b; a--; b--;
G[a].push_back(b); G[b].push_back(a);
lg.add_edge(a, b);
}
lg.complete();
vector<int> le(k + 1);
vector<ll> lesum(k + 1);
le[1] = c[0]; lesum[1] = d[0];
for (int i = 2; i <= k; i++) {
le[i] = lg.lca(le[i - 1], c[i-1]);
lesum[i] = lesum[i - 1] + d[i-1];
}
vector<int> ri(k + 1);
vector<ll> risum(k + 1);
ri[1] = c.back(); risum[1] = d.back();
for (int i = 2; i <= k; i++) {
ri[i] = lg.lca(ri[i - 1], c[k - i]);
risum[i] = risum[i - 1] + d[k - i];
}
vector<ll> vx;
rep1(i, k)vx.push_back(lesum[i]);
rep1(i, k)vx.push_back(risum[i]);
sort(all(vx));
vx.erase(unique(all(vx)), vx.end());
rep1(i, k) {
lesum[i] = lower_bound(all(vx), lesum[i]) - vx.begin();
risum[i] = lower_bound(all(vx), risum[i]) - vx.begin();
}
vector<pair<LP, int>> vs;
rep1(i, k - 1) {
int d = lg.dep(lg.lca(le[i], c.back()));
vs.push_back({ {d,lesum[i]},0 });
d = lg.dep(lg.lca(c[0], ri[i]));
vs.push_back({ {d,risum[i] }, 1});
}
sort(all(vs),greater<pair<LP,int>>());
auto calc = [&](ll x)->ll {
ll res = 0;
rep1(i, k) {
ll val = vx[lesum[i]] + lg.dep(le[i]);
if (val <= x)res++;
if (i == k)continue;
val = vx[risum[i]] + lg.dep(ri[i]);
if (val <= x)res++;
}
BIT btle(vx.size()), btri(vx.size());
for (pair<LP, int> p : vs) {
ll r = x - vx[p.first.second] - p.first.first;
int id = upper_bound(all(vx), r) - vx.begin();
if (p.second) {
res += btle.sum(0, id);
btri.add(p.first.second, 1);
}
else {
res += btri.sum(0, id);
btle.add(p.first.second, 1);
}
}
//cout << "? " << res << "\n";
BIT bt(vx.size());
int ad = lg.dep(le[k]);
rep1(i, k - 1) {
//add k-i
bt.add(risum[k - i], 1);
ll r = x - vx[lesum[i]] - ad;
int id = upper_bound(all(vx), r) - vx.begin();
res -= bt.sum(0, id);
}
return res+1;
};
ll alnum = (ll)k * (k + 1) / 2+1;
ll l = -1000000000000000;
ll r = -l;
while (r - l > 1) {
ll mid = (l + r) / 2;
ll num = calc(mid);
//cout << mid << " " << num << "\n";
if (num * 2 >= alnum) {
r = mid;
}
else l = mid;
}
cout << r << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(15);
//init_f();
//init();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239