結果
| 問題 |
No.36 素数が嫌い!
|
| コンテスト | |
| ユーザー |
poapoa
|
| 提出日時 | 2020-08-30 23:49:45 |
| 言語 | Haskell (9.10.1) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,036 bytes |
| コンパイル時間 | 6,212 ms |
| コンパイル使用メモリ | 179,748 KB |
| 実行使用メモリ | 10,752 KB |
| 最終ジャッジ日時 | 2024-11-15 16:00:11 |
| 合計ジャッジ時間 | 3,498 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 25 WA * 1 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) [2 of 2] Linking a.out
ソースコード
import Control.Monad
import Control.Monad.ST
import Data.Bool
import qualified Data.Bits as Bits
import qualified Data.Array.ST as ArrST
import qualified Data.Array.Unboxed as ArrU
sieveUA :: Int -> ArrU.UArray Int Bool
sieveUA top = ArrST.runSTUArray $ do
let m = (top-1) `div` 2
r = floor . sqrt $ fromIntegral top + 1
sieve <- ArrST.newArray (1,m) True
forM_ [1..r `div` 2] $ \i -> do
isPrime <- ArrST.readArray sieve i
when isPrime $ do
forM_ [2*i*(i+1), 2*i*(i+2)+1..m] $ \j -> do
ArrST.writeArray sieve j False
return sieve
primesToUA :: Int -> [Int]
primesToUA top = 2 : [i*2+1 | (i,True) <- ArrU.assocs $ sieveUA top]
main :: IO ()
main = readLn >>= putStrLn . solver
solver :: Int -> String
solver n = bool "NO" "YES" $ func1 n
func1 :: Int -> Bool
func1 n = iter n 0 ps
where
ps = primesToUA 1000000
iter res p [] = p >= 3 || (p == 2 && millerRabin p)
iter i j (l:ls)
| i < 2 = j >= 3
| j >= 3 = True
| i `mod` l == 0 = iter (func2 i l) (j + func3 i l) ls
| otherwise = iter i j ls
func2 :: Int -> Int -> Int
func2 n mo
| n `mod` mo == 0 = func2 (n `div` mo) mo
| otherwise = n
func3 :: Int -> Int -> Int
func3 n mo = iter n mo 0
where
iter i j k
| i `mod` j == 0 = iter (i `div` j) j (k + 1)
| otherwise = k
millerRabin :: Int -> Bool
millerRabin n
| n <= 1 = False
| n == 2
|| n == 3
|| n == 5
|| n == 7 = True
| even n = False
| otherwise = mrCheck $ fromIntegral n
powMod :: Integer -> Integer -> Integer -> Integer
powMod b e m = loop 1 (b `mod` m) e
where
loop res base pxe
| pxe <= 0 = res
| otherwise =
let res' = if pxe `mod` 2 == 1 then (res * base) `mod` m else res
pxe' = Bits.shift pxe (-1)
base' = (base * base) `mod` m
in loop res' base' pxe'
factoringPowers :: Integer -> (Integer, Integer)
factoringPowers n = loop (n - 1) 0
where
loop d s
| even d = loop (d `div` 2) (s + 1)
| otherwise = (s, d)
mrCheck :: Integer -> Bool
mrCheck p
| p < 2047 = loop [2]
| p < 9080191 = loop [31,73]
| p < 4759123141 = loop [2,7,61]
| p < 1122004669633 = loop [2,13,23,1662803]
| p < 2152302898747 = loop [2,3,5,7,11]
| p < 341550071728321 = loop [2,3,5,7,11,13,17]
| p < 3825123056546413051 = loop [2,3,5,7,11,13,17,19,23]
| p < 9223372036854775808 = loop [2,325,9375,28178,450775,9780504,1795265022]
| otherwise = loop [ 2 .. min (p - 1) (floor $ 2 * (log p')^(2 :: Int)) ]
where
p' = fromIntegral p :: Double
(s, d) = factoringPowers p
loop [] = True
loop (a:as)
| (powMod a d p) /= 1 && powLoop 0 = False
| otherwise = loop as
where
powLoop r
| r < s = (powMod a (2 ^ r * d) p) /= (p - 1) && powLoop (r + 1)
| otherwise = True
poapoa