結果
問題 | No.981 一般冪乗根 |
ユーザー | Kiri8128 |
提出日時 | 2020-09-04 01:03:09 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 199 ms / 6,000 ms |
コード長 | 3,377 bytes |
コンパイル時間 | 2,148 ms |
コンパイル使用メモリ | 81,840 KB |
実行使用メモリ | 144,640 KB |
最終ジャッジ日時 | 2024-11-24 09:23:59 |
合計ジャッジ時間 | 72,893 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
純コード判定中 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 73 ms
144,640 KB |
testcase_01 | AC | 60 ms
144,640 KB |
testcase_02 | AC | 62 ms
143,872 KB |
testcase_03 | AC | 62 ms
69,632 KB |
testcase_04 | AC | 65 ms
69,376 KB |
testcase_05 | AC | 63 ms
69,504 KB |
testcase_06 | AC | 76 ms
68,992 KB |
testcase_07 | AC | 61 ms
68,864 KB |
testcase_08 | AC | 63 ms
68,736 KB |
testcase_09 | AC | 61 ms
68,992 KB |
testcase_10 | AC | 61 ms
68,864 KB |
testcase_11 | AC | 62 ms
69,120 KB |
testcase_12 | AC | 69 ms
69,376 KB |
testcase_13 | AC | 67 ms
69,120 KB |
testcase_14 | AC | 67 ms
69,344 KB |
testcase_15 | AC | 66 ms
69,120 KB |
testcase_16 | AC | 71 ms
69,248 KB |
testcase_17 | AC | 62 ms
69,504 KB |
testcase_18 | AC | 62 ms
69,248 KB |
testcase_19 | AC | 72 ms
69,248 KB |
testcase_20 | AC | 62 ms
68,864 KB |
testcase_21 | AC | 69 ms
69,096 KB |
testcase_22 | AC | 63 ms
68,736 KB |
testcase_23 | AC | 63 ms
69,376 KB |
testcase_24 | AC | 62 ms
69,168 KB |
testcase_25 | AC | 75 ms
70,784 KB |
testcase_26 | AC | 75 ms
70,144 KB |
testcase_27 | AC | 58 ms
68,224 KB |
testcase_28 | AC | 199 ms
76,416 KB |
evil_60bit1.txt | AC | 70 ms
69,760 KB |
evil_60bit2.txt | AC | 68 ms
69,760 KB |
evil_60bit3.txt | AC | 83 ms
69,760 KB |
evil_hack | AC | 44 ms
52,736 KB |
evil_hard_random | AC | 80 ms
70,144 KB |
evil_hard_safeprime.txt | AC | 77 ms
71,296 KB |
evil_hard_tonelli0 | AC | 91 ms
73,216 KB |
evil_hard_tonelli1 | TLE | - |
evil_hard_tonelli2 | TLE | - |
evil_hard_tonelli3 | AC | 733 ms
76,552 KB |
evil_sefeprime1.txt | AC | 84 ms
70,784 KB |
evil_sefeprime2.txt | AC | 74 ms
70,784 KB |
evil_sefeprime3.txt | AC | 73 ms
71,168 KB |
evil_tonelli1.txt | TLE | - |
evil_tonelli2.txt | TLE | - |
ソースコード
def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def inv(a, mod): b = mod s, u = 1, 0 while b: q = a // b a, b = b, a % b s, u = u, s - q * u assert a == 1 return s % mod def sqrt_mod_prime_power(a, p, e, mod): # solve x^(p^e) = a q = mod - 1 s = 0 while q % p == 0: q //= p s += 1 pe = p ** e d = pow(-q, (p-1) * p ** (e-1) - 1, pe) * q r = pow(a, (d + 1) // pe, mod) t = pow(a, d, mod) if t == 1: return r ps = p ** (s - 1) c = -1 z = 2 while 1: c = pow(z, q, mod) if pow(c, ps, mod) != 1: break z += 1 b = -1 while t != 1: tmp = pow(t, p, mod) s2 = 1 while tmp != 1: tmp = pow(tmp, p, mod) s2 += 1 if s2 + e <= s: b = c for _ in range(s - s2 - e): b = pow(b, p, mod) c = pow(b, pe, mod) s = s2 r = r * b % mod t = t * c % mod return r def sqrt_mod(a, n, p): # solve x^n = a (mod p) assert n >= 1 a %= p n %= p - 1 if a <= 1: return a g = gcd(p - 1, n) if pow(a, (p-1) // g, p) != 1: return -1 a = pow(a, inv(n // g, (p-1) // g), p) pf = primeFactor(g) for pp in pf: a = sqrt_mod_prime_power(a, pp, pf[pp], p) return a T = int(input()) for _ in range(T): p, k, a = map(int, input().split()) print(sqrt_mod(a, k, p))