結果
| 問題 |
No.1206 OR, OR, OR......
|
| コンテスト | |
| ユーザー |
piddy
|
| 提出日時 | 2020-09-04 15:23:48 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 5,748 bytes |
| コンパイル時間 | 6,883 ms |
| コンパイル使用メモリ | 245,208 KB |
| 最終ジャッジ日時 | 2025-01-14 04:27:41 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:51:19: error: expected unqualified-id before 'long'
51 | modint<M>(long long right) : val(right) {sub(val);}
| ^~~~
main.cpp:51:19: error: expected ')' before 'long'
51 | modint<M>(long long right) : val(right) {sub(val);}
| ~^~~~
| )
main.cpp:52:19: error: expected unqualified-id before ')' token
52 | modint<M>() {val = 0;}
| ^
main.cpp: In function 'int main()':
main.cpp:199:33: error: conversion from 'int' to non-scalar type 'modint<998244353>' requested
199 | modint<P> ans = 0;
| ^
main.cpp: In instantiation of 'modint<P> modpow(long long int, long long int) [with long long int M = 998244353]':
main.cpp:200:21: required from here
main.cpp:150:28: error: could not convert '1' from 'int' to 'modint<998244353>'
150 | if (n == 0) return 1;
| ^
| |
| int
main.cpp:151:28: error: could not convert '0' from 'int' to 'modint<998244353>'
151 | if (a == 0) return 0;
| ^
| |
| int
main.cpp:152:28: error: could not convert '1' from 'int' to 'modint<998244353>'
152 | if (a == 1) return 1;
| ^
| |
| int
main.cpp:159:24: error: no match for 'operator=' (operand types are 'modint<998244353>' and 'long long int')
159 | if (b < M) ret = b;
| ~~~~^~~
main.cpp:48:8: note: candidate: 'constexpr modint<998244353>& modint<998244353>::operator=(const modint<998244353>&)'
48 | struct modint {
| ^~~~~~
main.cpp:48:8: note: no known conversion for argument 1 from 'long long int' to 'const modint<998244353>&'
main.cpp:48:8: no
ソースコード
#include <bits/stdc++.h>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define FSP(x) fixed << setprecision(x)
using namespace std;
using ll = long long;
constexpr ll INF = LLONG_MAX;
//constexpr ll P = 1e9 + 7;
constexpr ll P = 998244353;
constexpr long double PI = acosl(-1);
void Yes() {cout << "Yes\n";}
void No() {cout << "No\n";}
void YES() {cout << "YES\n";}
void NO() {cout << "NO\n";}
#include <iostream>
#include <vector>
/* NOTICE : followings requires template argument to be prime
- use of modinv
- division by modint
- use of factorial_inv
*/
/* verified : 2020/07/30
AtCoder, Knapsack for All Subsets
https://atcoder.jp/contests/abc169/tasks/abc169_f
AtCoder, Bouquet
https://atcoder.jp/contests/abc156/tasks/abc156_d
*/
template<long long P>
long long modinv(long long n) {
long long a = P, u = 1, v = 0;
while (a) {
long long t = n / a;
n -= t * a;
std::swap(n, a);
u -= t * v;
std::swap(u, v);
}
u %= P;
if (u < 0) u += P;
return u;
}
template<long long M>
struct modint {
long long val;
modint<M>(long long right) : val(right) {sub(val);}
modint<M>() {val = 0;}
void sub(long long &n) {
if (n < 0) {
long long m = (-n) % M;
n = M - m;
}
else n %= M;
}
modint<M> operator+ (modint<M> right) {return (this -> val) + right.val;}
modint<M> operator+ (long long right) {sub(right); return (this -> val) + right;}
modint<M> operator- (modint<M> right) {return (this -> val) - right.val;}
modint<M> operator- (long long right) {sub(right); return (this -> val) - right;}
modint<M> operator* (modint<M> right) {return (this -> val) * right.val;}
modint<M> operator* (long long right) {sub(right); return (this -> val) * right;}
bool operator== (modint<M> right) {return ((this -> val) == right.val);}
bool operator== (long long right) {sub(right); return ((this -> val) == right);}
bool operator!= (modint<M> right) {return ((this -> val) != right.val);}
bool operator!= (long long right) {sub(right); return ((this -> val) != right);}
bool operator<= (modint<M> right) {return ((this -> val) <= right.val);}
bool operator<= (long long right) {sub(right); return ((this -> val) <= right);}
bool operator>= (modint<M> right) {return ((this -> val) >= right.val);}
bool operator>= (long long right) {sub(right); return ((this -> val) >= right);}
bool operator< (modint<M> right) {return ((this -> val) < right.val);}
bool operator< (long long right) {sub(right); return ((this -> val) < right);}
bool operator> (modint<M> right) {return ((this -> val) > right.val);}
bool operator> (long long right) {sub(right); return ((this -> val) > right);}
void operator+= (modint<M> right) {*this = *this + right;}
void operator+= (long long right) {*this = *this + right;}
void operator-= (modint<M> right) {*this = *this - right;}
void operator-= (long long right) {*this = *this - right;}
void operator*= (modint<M> right) {*this = *this * right;}
void operator*= (long long right) {*this = *this * right;}
modint<M>& operator++ () {*this += 1; return *this;}
modint<M> operator++ (int) {*this += 1; return *this - 1;}
modint<M>& operator-- () {*this -= 1; return *this;}
modint<M> operator-- (int) {*this -= 1; return *this + 1;}
modint<M> operator/ (modint<M> right) {return *this * modinv<M>(right.val);}
modint<M> operator/ (long long right) {sub(right); return *this * modinv<M>(right);}
void operator/= (modint<M> right) {*this = *this / right;}
void operator/= (long long right) {*this = *this / right;}
};
std::vector<long long> factorial;
std::vector<long long> factorial_inv;
template<long long P>
void make_table(long long n) {
factorial.resize(n + 1, 1); factorial_inv.resize(n + 1, 1);
for (long long i = 2; i <= n; i++) {
factorial[i] = factorial[i - 1] * i % P;
}
factorial_inv[n] = modinv<P>(factorial[n]);
for (long long i = n - 1; i >= 0; i--) {
factorial_inv[i] = factorial_inv[i + 1] * (i + 1) % P;
}
}
template<long long P>
modint<P> permutation(long long n, long long r) {
if (n <= factorial.size()) {
modint<P> a = factorial[n], b = factorial_inv[n - r];
return a * b;
}
else {
std::cerr << "attention : factorial table is not constructed" << '\n';
modint<P> ret = 1;
for (long long i = 0; i < r; i++) ret *= n - i;
return ret;
}
}
template<long long P>
modint<P> combination(long long n, long long r) {
r = std::min(r, n - r);
if (n <= factorial.size()) {
return permutation<P>(n, r) * factorial_inv[r];
}
else {
std::cerr << "attention : factorial table is not constructed" << '\n';
modint<P> ret = 1;
for (long long i = 0; i < r; i++) {
ret *= n - i;
ret /= i + 1;
}
return ret;
}
}
template<long long M>
modint<M> modpow(long long a, long long n) {
a %= M;
if (n == 0) return 1;
if (a == 0) return 0;
if (a == 1) return 1;
long long b = 1, cnt = 0;
while (b < M && cnt < n) {
b *= a;
cnt++;
}
modint<M> ret;
if (b < M) ret = b;
else {
b %= M;
ret = modpow<M>(b, n / cnt) * modpow<M>(a, n % cnt);
}
return ret;
}
template<long long M>
modint<M> modpow(modint<M> m, long long n) {
long long a = m.val;
if (n == 0) return 1;
if (a == 0) return 0;
if (a == 1) return 1;
long long b = 1, cnt = 0;
while (b < M && cnt < n) {
b *= a;
cnt++;
}
modint<M> ret;
if (b < M) ret = b;
else {
b %= M;
ret = modpow<M>(b, n / cnt) * modpow<M>(a, n % cnt);
}
return ret;
}
template<long long M>
std::ostream &operator<< (std::ostream &out, modint<M> tgt) {out << tgt.val; return out;}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll t;
cin >> t;
while (t--) {
ll n, k;
cin >> n >> k;
modint<P> ans = 0;
cout << (modpow<P>(2, k) - 1) * modpow<P>(modpow<P>(2, k), n - 1) * n << '\n';
}
}
piddy