結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | Mister |
提出日時 | 2020-09-04 16:46:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 78 ms / 7,000 ms |
コード長 | 5,277 bytes |
コンパイル時間 | 976 ms |
コンパイル使用メモリ | 82,288 KB |
実行使用メモリ | 6,528 KB |
最終ジャッジ日時 | 2024-11-26 03:02:18 |
合計ジャッジ時間 | 3,448 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | AC | 3 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 71 ms
6,400 KB |
testcase_18 | AC | 62 ms
6,520 KB |
testcase_19 | AC | 70 ms
6,400 KB |
testcase_20 | AC | 62 ms
6,524 KB |
testcase_21 | AC | 63 ms
6,524 KB |
testcase_22 | AC | 64 ms
6,528 KB |
testcase_23 | AC | 69 ms
6,392 KB |
testcase_24 | AC | 78 ms
6,528 KB |
testcase_25 | AC | 76 ms
6,520 KB |
testcase_26 | AC | 69 ms
6,520 KB |
testcase_27 | AC | 66 ms
6,524 KB |
testcase_28 | AC | 73 ms
6,524 KB |
testcase_29 | AC | 71 ms
6,524 KB |
testcase_30 | AC | 68 ms
6,520 KB |
ソースコード
#include <iostream> #include <vector> template <int MOD> struct ModInt { using lint = long long; int val; // constructor ModInt(lint v = 0) : val(v % MOD) { if (val < 0) val += MOD; }; // unary operator ModInt operator+() const { return ModInt(val); } ModInt operator-() const { return ModInt(MOD - val); } ModInt inv() const { return this->pow(MOD - 2); } // arithmetic ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; } ModInt pow(lint n) const { auto x = ModInt(1); auto b = *this; while (n > 0) { if (n & 1) x *= b; n >>= 1; b *= b; } return x; } // compound assignment ModInt& operator+=(const ModInt& x) { if ((val += x.val) >= MOD) val -= MOD; return *this; } ModInt& operator-=(const ModInt& x) { if ((val -= x.val) < 0) val += MOD; return *this; } ModInt& operator*=(const ModInt& x) { val = lint(val) * x.val % MOD; return *this; } ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); } // compare bool operator==(const ModInt& b) const { return val == b.val; } bool operator!=(const ModInt& b) const { return val != b.val; } bool operator<(const ModInt& b) const { return val < b.val; } bool operator<=(const ModInt& b) const { return val <= b.val; } bool operator>(const ModInt& b) const { return val > b.val; } bool operator>=(const ModInt& b) const { return val >= b.val; } // I/O friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept { lint v; is >> v; x = v; return is; } friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; } }; template <int MOD, int Root> struct NumberTheoreticalTransform { using mint = ModInt<MOD>; using mints = std::vector<mint>; // the 2^k-th root of 1 std::vector<mint> zetas; explicit NumberTheoreticalTransform() { int exp = MOD - 1; while (true) { mint zeta = mint(Root).pow(exp); zetas.push_back(zeta); if (exp & 1) break; exp /= 2; } } // ceil(log_2 n) static int clog2(int n) { int k = 0; while ((1 << k) < n) ++k; return k; } // 2-radix cooley-tukey algorithm without bit reverse // the size of f must be a power of 2 void ntt(mints& f) const { int n = f.size(); for (int m = n >> 1; m >= 1; m >>= 1) { auto zeta = zetas[clog2(m) + 1]; mint zetapow(1); for (int p = 0; p < m; ++p) { for (int s = 0; s < n; s += (m << 1)) { auto l = f[s + p], r = f[s + p + m]; f[s + p] = l + r; f[s + p + m] = (l - r) * zetapow; } zetapow = zetapow * zeta; } } } // the inverse of above function void intt(mints& f) const { int n = f.size(); for (int m = 1; m <= (n >> 1); m <<= 1) { auto zeta = zetas[clog2(m) + 1].inv(); mint zetapow(1); for (int p = 0; p < m; ++p) { for (int s = 0; s < n; s += (m << 1)) { auto l = f[s + p], r = f[s + p + m] * zetapow; f[s + p] = l + r; f[s + p + m] = l - r; } zetapow = zetapow * zeta; } } auto ninv = mint(n).inv(); for (auto& x : f) x *= ninv; } mints convolute(mints f, mints g) const { int fsz = f.size(), gsz = g.size(); // simple convolution in small cases if (std::min(fsz, gsz) < 8) { mints ret(fsz + gsz - 1, 0); for (int i = 0; i < fsz; ++i) { for (int j = 0; j < gsz; ++j) { ret[i + j] += f[i] * g[j]; } } return ret; } int n = 1 << clog2(fsz + gsz - 1); f.resize(n, mint(0)); g.resize(n, mint(0)); ntt(f); ntt(g); for (int i = 0; i < n; ++i) f[i] *= g[i]; intt(f); f.resize(fsz + gsz - 1); return f; } }; constexpr int MOD = 998244353; using mint = ModInt<MOD>; const NumberTheoreticalTransform<MOD, 3> NTT; void solve() { int p, q, n; std::cin >> p >> q >> n; std::vector<mint> xs(n, 0), ys(n, 0); while (p--) { int x; std::cin >> x; xs[x - 1] = 1; } while (q--) { int x; std::cin >> x; ys[n - x] = 1; } auto zs = NTT.convolute(xs, ys); int m; std::cin >> m; for (int k = 0; k < m; ++k) { std::cout << zs[k + n - 1] << "\n"; } } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; }