結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
tute7627
|
| 提出日時 | 2020-09-04 19:06:02 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 30 ms / 9,973 ms |
| コード長 | 6,677 bytes |
| コンパイル時間 | 2,419 ms |
| コンパイル使用メモリ | 204,544 KB |
| 最終ジャッジ日時 | 2025-01-14 04:41:15 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
//#define _GLIBCXX_DEBUG
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a) (a).begin(),(a).end()
#define ALLR(a) (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}
template<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};
void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};
template<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
namespace FastPrimeFactorization {
template< typename word, typename dword, typename sword >
struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const {
return x == rhs.x;
}
bool operator!=(const UnsafeMod &rhs) const {
return x != rhs.x;
}
UnsafeMod &operator+=(const UnsafeMod &rhs) {
if((x += rhs.x) >= mod) x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs) {
if(sword(x -= rhs.x) < 0) x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const {
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const {
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const {
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for(UnsafeMod base = *this; e; e >>= 1, base *= base) {
if(e & 1) ret *= base;
}
return ret;
}
word get() const {
return reduce(x);
}
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() {
return mod;
}
static word init(word w) {
return reduce(dword(w) * r2);
}
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) {
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod< uint64_t, uint128_t, int64_t >;
template<> uint64_t Mod64::mod = 0;
template<> uint64_t Mod64::inv = 0;
template<> uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod< uint32_t, uint64_t, int32_t >;
template<> uint32_t Mod32::mod = 0;
template<> uint32_t Mod32::inv = 0;
template<> uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while(d % 2 == 0) d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for(uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if(n <= a) break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while(t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if(y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while(d % 2 == 0) d /= 2;
Mod32 e{1}, rev{n - 1};
for(uint32_t a : {2, 7, 61}) {
if(n <= a) break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while(t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if(y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(uint64_t n) {
if(n == 2) return true;
if(n == 1 || n % 2 == 0) return false;
if(n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if(is_prime(n)) return n;
if(n % 2 == 0) return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for(Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while(d == 1);
if(d < n) return d;
}
assert(0);
}
vector< uint64_t > prime_factor(uint64_t n) {
if(n <= 1) return {};
uint64_t p = pollard_rho(n);
if(p == n) return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
};
int main(){
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
ll res=0,buf=0;
bool judge = true;
ll n;cin>>n;
while(n--){
ll x;cin>>x;
auto k=FastPrimeFactorization::is_prime(x);
cout<<x spa k<<endl;
}
return 0;
}
tute7627