結果
問題 | No.8030 ミラー・ラビン素数判定法のテスト |
ユーザー | 👑 tute7627 |
提出日時 | 2020-09-04 19:06:02 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 28 ms / 9,973 ms |
コード長 | 6,677 bytes |
コンパイル時間 | 3,755 ms |
コンパイル使用メモリ | 209,300 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:27:37 |
合計ジャッジ時間 | 2,903 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 18 ms
5,248 KB |
testcase_05 | AC | 18 ms
5,248 KB |
testcase_06 | AC | 10 ms
5,248 KB |
testcase_07 | AC | 11 ms
5,248 KB |
testcase_08 | AC | 11 ms
5,248 KB |
testcase_09 | AC | 28 ms
5,248 KB |
ソースコード
//#define _GLIBCXX_DEBUG #include<bits/stdc++.h> using namespace std; #define endl '\n' #define lfs cout<<fixed<<setprecision(10) #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() #define spa << " " << #define fi first #define se second #define MP make_pair #define MT make_tuple #define PB push_back #define EB emplace_back #define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++) #define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--) using ll = long long; using ld = long double; const ll MOD1 = 1e9+7; const ll MOD9 = 998244353; const ll INF = 1e18; using P = pair<ll, ll>; template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;} template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;} ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});} void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;} void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;} void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;} template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} template<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}}; void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}}; template<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;}; template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;} ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;} vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1}; template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);} template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));} template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;} template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;} //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count()); namespace FastPrimeFactorization { template< typename word, typename dword, typename sword > struct UnsafeMod { UnsafeMod() : x(0) {} UnsafeMod(word _x) : x(init(_x)) {} bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; } bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; } UnsafeMod &operator+=(const UnsafeMod &rhs) { if((x += rhs.x) >= mod) x -= mod; return *this; } UnsafeMod &operator-=(const UnsafeMod &rhs) { if(sword(x -= rhs.x) < 0) x += mod; return *this; } UnsafeMod &operator*=(const UnsafeMod &rhs) { x = reduce(dword(x) * rhs.x); return *this; } UnsafeMod operator+(const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator-(const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator*(const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; } UnsafeMod pow(uint64_t e) const { UnsafeMod ret(1); for(UnsafeMod base = *this; e; e >>= 1, base *= base) { if(e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using uint128_t = __uint128_t; using Mod64 = UnsafeMod< uint64_t, uint128_t, int64_t >; template<> uint64_t Mod64::mod = 0; template<> uint64_t Mod64::inv = 0; template<> uint64_t Mod64::r2 = 0; using Mod32 = UnsafeMod< uint32_t, uint64_t, int32_t >; template<> uint32_t Mod32::mod = 0; template<> uint32_t Mod32::inv = 0; template<> uint32_t Mod32::r2 = 0; bool miller_rabin_primality_test_uint64(uint64_t n) { Mod64::set_mod(n); uint64_t d = n - 1; while(d % 2 == 0) d /= 2; Mod64 e{1}, rev{n - 1}; // http://miller-rabin.appspot.com/ < 2^64 for(uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if(n <= a) break; uint64_t t = d; Mod64 y = Mod64(a).pow(t); while(t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if(y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_primality_test_uint32(uint32_t n) { Mod32::set_mod(n); uint32_t d = n - 1; while(d % 2 == 0) d /= 2; Mod32 e{1}, rev{n - 1}; for(uint32_t a : {2, 7, 61}) { if(n <= a) break; uint32_t t = d; Mod32 y = Mod32(a).pow(t); while(t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if(y != rev && t % 2 == 0) return false; } return true; } bool is_prime(uint64_t n) { if(n == 2) return true; if(n == 1 || n % 2 == 0) return false; if(n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n); return miller_rabin_primality_test_uint64(n); } uint64_t pollard_rho(uint64_t n) { if(is_prime(n)) return n; if(n % 2 == 0) return 2; Mod64::set_mod(n); uint64_t d; Mod64 one{1}; for(Mod64 c{one};; c += one) { Mod64 x{2}, y{2}; do { x = x * x + c; y = y * y + c; y = y * y + c; d = __gcd((x - y).get(), n); } while(d == 1); if(d < n) return d; } assert(0); } vector< uint64_t > prime_factor(uint64_t n) { if(n <= 1) return {}; uint64_t p = pollard_rho(n); if(p == n) return {p}; auto l = prime_factor(p); auto r = prime_factor(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } }; int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll res=0,buf=0; bool judge = true; ll n;cin>>n; while(n--){ ll x;cin>>x; auto k=FastPrimeFactorization::is_prime(x); cout<<x spa k<<endl; } return 0; }