結果

問題 No.1222 -101
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-09-04 22:50:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 480 ms / 2,000 ms
コード長 15,324 bytes
コンパイル時間 3,982 ms
コンパイル使用メモリ 319,300 KB
実行使用メモリ 12,544 KB
最終ジャッジ日時 2024-11-26 20:44:48
合計ジャッジ時間 12,642 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 3 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 177 ms
10,112 KB
testcase_11 AC 176 ms
10,168 KB
testcase_12 AC 422 ms
12,452 KB
testcase_13 AC 418 ms
12,544 KB
testcase_14 AC 418 ms
12,532 KB
testcase_15 AC 297 ms
11,264 KB
testcase_16 AC 360 ms
11,948 KB
testcase_17 AC 405 ms
12,288 KB
testcase_18 AC 294 ms
11,392 KB
testcase_19 AC 328 ms
11,512 KB
testcase_20 AC 372 ms
12,032 KB
testcase_21 AC 365 ms
12,032 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 2 ms
5,248 KB
testcase_30 AC 2 ms
5,248 KB
testcase_31 AC 2 ms
5,248 KB
testcase_32 AC 480 ms
12,404 KB
testcase_33 AC 469 ms
12,416 KB
testcase_34 AC 473 ms
12,416 KB
testcase_35 AC 465 ms
12,360 KB
testcase_36 AC 391 ms
12,544 KB
testcase_37 AC 390 ms
12,464 KB
testcase_38 AC 389 ms
12,504 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...)      \
  do {                \
    out(__VA_ARGS__); \
    return;           \
  } while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << " ";
  out(u...);
}

#ifdef NyaanDebug
#define trc(...)                   \
  do {                             \
    cerr << #__VA_ARGS__ << " = "; \
    dbg_out(__VA_ARGS__);          \
  } while (0)
#define trca(v, N)       \
  do {                   \
    cerr << #v << " = "; \
    array_out(v, N);     \
  } while (0)
#define trcc(v)                             \
  do {                                      \
    cerr << #v << " = {";                   \
    each(x, v) { cerr << " " << x << ","; } \
    cerr << "}" << endl;                    \
  } while (0)
template <typename T>
void _cout(const T &c) {
  cerr << c;
}
void _cout(const int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else if (c == -1001001001)
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned int &c) {
  if (c == 1001001001)
    cerr << "inf";
  else
    cerr << c;
}
void _cout(const long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else if (c == -1001001001 || c == -((1LL << 61) - 1))
    cerr << "-inf";
  else
    cerr << c;
}
void _cout(const unsigned long long &c) {
  if (c == 1001001001 || c == (1LL << 61) - 1)
    cerr << "inf";
  else
    cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
  cerr << "{ ";
  _cout(p.fi);
  cerr << ", ";
  _cout(p.se);
  cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
  int s = v.size();
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
  cerr << "[ ";
  for (const auto &x : v) {
    cerr << endl;
    _cout(x);
    cerr << ", ";
  }
  cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
  _cout(t);
  if (sizeof...(u)) cerr << ", ";
  dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
  cerr << "{ ";
  for (int i = 0; i < s; i++) {
    cerr << (i ? ", " : "");
    _cout(v[i]);
  }
  cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
  cerr << "[ ";
  for (int i = 0; i < H; i++) {
    cerr << (i ? ", " : "");
    array_out(v[i], W);
  }
  cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif

inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
  a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
  a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
  return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
  return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  while (n) {
    if (n & 1) ret *= x;
    x *= x;
    n >>= 1;
  }
  return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
  vector<T> ret(v.size() + 1);
  for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
  vector<T> ret(N);
  iota(begin(ret), end(ret), 0);
  return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
  vector<int> inv(v.size());
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

void solve();
int main() { solve(); }

#pragma endregion
using namespace std;

template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};
using namespace std;

// LazySegmentTree
template <typename T, typename E, typename F, typename G, typename H>
struct LST {
  int n, height;
  F f;
  G g;
  H h;
  T ti;
  E ei;
  vector<T> dat;
  vector<E> laz;
  LST(int n, F f, G g, H h, T ti, E ei) : f(f), g(g), h(h), ti(ti), ei(ei) {
    init(n);
  }
  LST(const vector<T> &v, F f, G g, H h, T ti, E ei)
      : f(f), g(g), h(h), ti(ti), ei(ei) {
    init((int)v.size());
    build(v);
  }

  void init(int n_) {
    n = 1;
    height = 0;
    while (n < n_) n <<= 1, height++;
    dat.assign(2 * n, ti);
    laz.assign(2 * n, ei);
  }
  void build(const vector<T> &v) {
    int n_ = v.size();
    init(n_);
    for (int i = 0; i < n_; i++) dat[n + i] = v[i];
    for (int i = n - 1; i; i--)
      dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
  }
  inline T reflect(int k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }
  inline void eval(int k) {
    if (laz[k] == ei) return;
    laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]);
    laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);
    dat[k] = reflect(k);
    laz[k] = ei;
  }
  inline void thrust(int k) {
    for (int i = height; i; i--) eval(k >> i);
  }
  inline void recalc(int k) {
    while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
  }
  void update(int a, int b, E x) {
    thrust(a += n);
    thrust(b += n - 1);
    for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) laz[l] = h(laz[l], x), l++;
      if (r & 1) --r, laz[r] = h(laz[r], x);
    }
    recalc(a);
    recalc(b);
  }
  void set_val(int a, T x) {
    thrust(a += n);
    dat[a] = x;
    laz[a] = ei;
    recalc(a);
  }
  T query(int a, int b) {
    thrust(a += n);
    thrust(b += n - 1);
    T vl = ti, vr = ti;
    for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) vl = f(vl, reflect(l++));
      if (r & 1) vr = f(reflect(--r), vr);
    }
    return f(vl, vr);
  }
};
using namespace std;

template <typename E, E UNUSED_VALUE>
struct UpdateSum_LazySegmentTree {
  int n, height;
  using T = pair<E, E>;
  T f(T a, T b) { return T(a.first + b.first, a.second + b.second); };
  T g(T a, E b) { return T(b * a.second, a.second); };
  E h(E, E b) { return b; };
  T ti = P(0, 0);
  E ei = UNUSED_VALUE;
  vector<T> dat;
  vector<E> laz;

  UpdateSum_LazySegmentTree(const vector<E> &v) { build(v); }

  void init(int n_) {
    n = 1;
    height = 0;
    while (n < n_) n <<= 1, height++;
    dat.assign(2 * n, ti);
    laz.assign(2 * n, ei);
  }

  void build(const vector<E> &v) {
    int n_ = v.size();
    init(n_);
    for (int i = 0; i < n_; i++) dat[n + i] = T(v[i], 1);
    for (int i = n - 1; i; i--)
      dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
  }

  inline T reflect(int k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }

  inline void propagate(int k) {
    if (laz[k] == ei) return;
    laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]);
    laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);
    dat[k] = reflect(k);
    laz[k] = ei;
  }

  inline void thrust(int k) {
    for (int i = height; i; i--) propagate(k >> i);
  }

  inline void recalc(int k) {
    while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
  }

  void update(int a, int b, E x) {
    if (a >= b) return;
    thrust(a += n);
    thrust(b += n - 1);
    for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) laz[l] = h(laz[l], x), l++;
      if (r & 1) --r, laz[r] = h(laz[r], x);
    }
    recalc(a);
    recalc(b);
  }

  void set_val(int a, T x) {
    thrust(a += n);
    dat[a] = x;
    laz[a] = ei;
    recalc(a);
  }

  E query(int a, int b) {
    if (a >= b) return ti.first;
    thrust(a += n);
    thrust(b += n - 1);
    T vl = ti, vr = ti;
    for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) vl = f(vl, reflect(l++));
      if (r & 1) vr = f(reflect(--r), vr);
    }
    return f(vl, vr).first;
  }
};

void solve() {
  ini(N, M);
  vi L(M), R(M), P(M);
  in3(L, R, P);
  each(x, L) x--;
  using mint = LazyMontgomeryModInt<1000000007>;
  {
    UpdateSum_LazySegmentTree<int, -1> seg(vi(N, 0));
    rep(i, M) {
      if (P[i] != 0) seg.update(L[i], R[i], 1);
    }

    rep(i, M) {
      if (P[i] != 0) continue;
      if (seg.query(L[i], R[i]) == R[i] - L[i]) die(0);
    }
  }

  auto ord = mkord(M, [&](int i, int j) { return R[i] < R[j]; });

  auto f = [](mint a, mint b) { return a + b; };
  auto g = [](mint a, mint b) { return a * b; };
  auto h = [](mint a, mint b) { return a * b; };
  vector<mint> sini(N + 1);
  sini[0] = 1;
  LST<mint, mint, decltype(f), decltype(g), decltype(h)> lseg(sini, f, g, h, 0,
                                                              1);
  int id = 0;
  each(i, ord) {
    trc(i, id);
    if (P[i] != 0) {
      while (id < R[i]) {
        ++id;
        if (id <= L[i]) lseg.set_val(id, lseg.query(0, id));
        lseg.update(0, id, mint(2));
      }
      lseg.update(L[i] + 1, R[i] + 1, mint(0));
      rep(i, N + 1) trc(lseg.query(i, i + 1));
      continue;
    }
    while (id < R[i]) {
      ++id;
      lseg.set_val(id, lseg.query(0, id));
      lseg.update(0, id, mint(2));
    }
    lseg.update(0, L[i] + 1, mint(0));

    rep(i, N + 1) trc(lseg.query(i, i + 1));
  }
  while (id < N) {
    ++id;
    lseg.set_val(id, lseg.query(0, id));
    lseg.update(0, id, mint(2));
  }

  int nonzero = 0;
  each(p, P) nonzero += (p != 0);
  mint ans = lseg.query(0, N + 1) * mint(2).inverse().pow(nonzero);
  out(ans);
}
0