結果

問題 No.1222 -101
ユーザー NyaanNyaan
提出日時 2020-09-04 22:50:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 550 ms / 2,000 ms
コード長 15,324 bytes
コンパイル時間 4,083 ms
コンパイル使用メモリ 322,288 KB
最終ジャッジ日時 2025-01-14 06:15:07
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define inc(...) \
char __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...) \
do { \
out(__VA_ARGS__); \
return; \
} while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
cout << t;
if (sizeof...(u)) cout << " ";
out(u...);
}
#ifdef NyaanDebug
#define trc(...) \
do { \
cerr << #__VA_ARGS__ << " = "; \
dbg_out(__VA_ARGS__); \
} while (0)
#define trca(v, N) \
do { \
cerr << #v << " = "; \
array_out(v, N); \
} while (0)
#define trcc(v) \
do { \
cerr << #v << " = {"; \
each(x, v) { cerr << " " << x << ","; } \
cerr << "}" << endl; \
} while (0)
template <typename T>
void _cout(const T &c) {
cerr << c;
}
void _cout(const int &c) {
if (c == 1001001001)
cerr << "inf";
else if (c == -1001001001)
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned int &c) {
if (c == 1001001001)
cerr << "inf";
else
cerr << c;
}
void _cout(const long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else if (c == -1001001001 || c == -((1LL << 61) - 1))
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else
cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
cerr << "{ ";
_cout(p.fi);
cerr << ", ";
_cout(p.se);
cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
int s = v.size();
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
cerr << "[ ";
for (const auto &x : v) {
cerr << endl;
_cout(x);
cerr << ", ";
}
cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
_cout(t);
if (sizeof...(u)) cerr << ", ";
dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
cerr << "[ ";
for (int i = 0; i < H; i++) {
cerr << (i ? ", " : "");
array_out(v[i], W);
}
cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif
inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
vector<T> ret(v.size() + 1);
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
vector<T> ret(N);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
vector<int> inv(v.size());
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
void solve();
int main() { solve(); }
#pragma endregion
using namespace std;
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const { return pow(mod - 2); }
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
using namespace std;
// LazySegmentTree
template <typename T, typename E, typename F, typename G, typename H>
struct LST {
int n, height;
F f;
G g;
H h;
T ti;
E ei;
vector<T> dat;
vector<E> laz;
LST(int n, F f, G g, H h, T ti, E ei) : f(f), g(g), h(h), ti(ti), ei(ei) {
init(n);
}
LST(const vector<T> &v, F f, G g, H h, T ti, E ei)
: f(f), g(g), h(h), ti(ti), ei(ei) {
init((int)v.size());
build(v);
}
void init(int n_) {
n = 1;
height = 0;
while (n < n_) n <<= 1, height++;
dat.assign(2 * n, ti);
laz.assign(2 * n, ei);
}
void build(const vector<T> &v) {
int n_ = v.size();
init(n_);
for (int i = 0; i < n_; i++) dat[n + i] = v[i];
for (int i = n - 1; i; i--)
dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
}
inline T reflect(int k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }
inline void eval(int k) {
if (laz[k] == ei) return;
laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]);
laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);
dat[k] = reflect(k);
laz[k] = ei;
}
inline void thrust(int k) {
for (int i = height; i; i--) eval(k >> i);
}
inline void recalc(int k) {
while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
}
void update(int a, int b, E x) {
thrust(a += n);
thrust(b += n - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) laz[l] = h(laz[l], x), l++;
if (r & 1) --r, laz[r] = h(laz[r], x);
}
recalc(a);
recalc(b);
}
void set_val(int a, T x) {
thrust(a += n);
dat[a] = x;
laz[a] = ei;
recalc(a);
}
T query(int a, int b) {
thrust(a += n);
thrust(b += n - 1);
T vl = ti, vr = ti;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, reflect(l++));
if (r & 1) vr = f(reflect(--r), vr);
}
return f(vl, vr);
}
};
using namespace std;
template <typename E, E UNUSED_VALUE>
struct UpdateSum_LazySegmentTree {
int n, height;
using T = pair<E, E>;
T f(T a, T b) { return T(a.first + b.first, a.second + b.second); };
T g(T a, E b) { return T(b * a.second, a.second); };
E h(E, E b) { return b; };
T ti = P(0, 0);
E ei = UNUSED_VALUE;
vector<T> dat;
vector<E> laz;
UpdateSum_LazySegmentTree(const vector<E> &v) { build(v); }
void init(int n_) {
n = 1;
height = 0;
while (n < n_) n <<= 1, height++;
dat.assign(2 * n, ti);
laz.assign(2 * n, ei);
}
void build(const vector<E> &v) {
int n_ = v.size();
init(n_);
for (int i = 0; i < n_; i++) dat[n + i] = T(v[i], 1);
for (int i = n - 1; i; i--)
dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
}
inline T reflect(int k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); }
inline void propagate(int k) {
if (laz[k] == ei) return;
laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]);
laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]);
dat[k] = reflect(k);
laz[k] = ei;
}
inline void thrust(int k) {
for (int i = height; i; i--) propagate(k >> i);
}
inline void recalc(int k) {
while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1));
}
void update(int a, int b, E x) {
if (a >= b) return;
thrust(a += n);
thrust(b += n - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) laz[l] = h(laz[l], x), l++;
if (r & 1) --r, laz[r] = h(laz[r], x);
}
recalc(a);
recalc(b);
}
void set_val(int a, T x) {
thrust(a += n);
dat[a] = x;
laz[a] = ei;
recalc(a);
}
E query(int a, int b) {
if (a >= b) return ti.first;
thrust(a += n);
thrust(b += n - 1);
T vl = ti, vr = ti;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, reflect(l++));
if (r & 1) vr = f(reflect(--r), vr);
}
return f(vl, vr).first;
}
};
void solve() {
ini(N, M);
vi L(M), R(M), P(M);
in3(L, R, P);
each(x, L) x--;
using mint = LazyMontgomeryModInt<1000000007>;
{
UpdateSum_LazySegmentTree<int, -1> seg(vi(N, 0));
rep(i, M) {
if (P[i] != 0) seg.update(L[i], R[i], 1);
}
rep(i, M) {
if (P[i] != 0) continue;
if (seg.query(L[i], R[i]) == R[i] - L[i]) die(0);
}
}
auto ord = mkord(M, [&](int i, int j) { return R[i] < R[j]; });
auto f = [](mint a, mint b) { return a + b; };
auto g = [](mint a, mint b) { return a * b; };
auto h = [](mint a, mint b) { return a * b; };
vector<mint> sini(N + 1);
sini[0] = 1;
LST<mint, mint, decltype(f), decltype(g), decltype(h)> lseg(sini, f, g, h, 0,
1);
int id = 0;
each(i, ord) {
trc(i, id);
if (P[i] != 0) {
while (id < R[i]) {
++id;
if (id <= L[i]) lseg.set_val(id, lseg.query(0, id));
lseg.update(0, id, mint(2));
}
lseg.update(L[i] + 1, R[i] + 1, mint(0));
rep(i, N + 1) trc(lseg.query(i, i + 1));
continue;
}
while (id < R[i]) {
++id;
lseg.set_val(id, lseg.query(0, id));
lseg.update(0, id, mint(2));
}
lseg.update(0, L[i] + 1, mint(0));
rep(i, N + 1) trc(lseg.query(i, i + 1));
}
while (id < N) {
++id;
lseg.set_val(id, lseg.query(0, id));
lseg.update(0, id, mint(2));
}
int nonzero = 0;
each(p, P) nonzero += (p != 0);
mint ans = lseg.query(0, N + 1) * mint(2).inverse().pow(nonzero);
out(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0