結果
問題 | No.1283 Extra Fee |
ユーザー | nok0 |
提出日時 | 2020-09-05 18:31:21 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 366 ms / 2,000 ms |
コード長 | 5,413 bytes |
コンパイル時間 | 2,519 ms |
コンパイル使用メモリ | 219,712 KB |
実行使用メモリ | 144,076 KB |
最終ジャッジ日時 | 2024-11-16 06:26:43 |
合計ジャッジ時間 | 8,066 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 19 ms
10,496 KB |
testcase_12 | AC | 22 ms
11,776 KB |
testcase_13 | AC | 14 ms
8,704 KB |
testcase_14 | AC | 61 ms
27,648 KB |
testcase_15 | AC | 98 ms
42,148 KB |
testcase_16 | AC | 20 ms
11,392 KB |
testcase_17 | AC | 309 ms
130,976 KB |
testcase_18 | AC | 310 ms
131,580 KB |
testcase_19 | AC | 331 ms
137,524 KB |
testcase_20 | AC | 308 ms
128,792 KB |
testcase_21 | AC | 307 ms
130,892 KB |
testcase_22 | AC | 278 ms
117,384 KB |
testcase_23 | AC | 320 ms
141,672 KB |
testcase_24 | AC | 338 ms
141,772 KB |
testcase_25 | AC | 353 ms
142,008 KB |
testcase_26 | AC | 361 ms
141,892 KB |
testcase_27 | AC | 356 ms
141,880 KB |
testcase_28 | AC | 366 ms
141,772 KB |
testcase_29 | AC | 349 ms
144,076 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; #pragma region Macros #define ll long long #define ld long double #define FOR(i,l,r) for(ll i=(l);i<(r);++i) #define REP(i,n) FOR(i,0,n) #define REPS(i,n) FOR(i,1,n+1) #define RFOR(i,l,r) for(ll i=(l);i>=(r);--i) #define RREP(i,n) RFOR(i,n-1,0) #define RREPS(i,n) RFOR(i,n,1) #define pb push_back #define eb emplace_back #define SZ(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() template<class T = ll> using V = vector<T>; template<class T = ll> using VV = V<V<T>>; using P = pair<ll, ll>; #define VEC(type, name, size)\ V<type> name(size);\ IN(name) #define VVEC(type, name, h, w)\ VV<type> name(h, V<type>(w));\ IN(name) #define INT(...)\ int __VA_ARGS__;\ IN(__VA_ARGS__) #define LL(...)\ ll __VA_ARGS__;\ IN(__VA_ARGS__) #define STR(...)\ string __VA_ARGS__;\ IN(__VA_ARGS__) #define CHAR(...)\ char __VA_ARGS__;\ IN(__VA_ARGS__) #define DOUBLE(...)\ DOUBLE __VA_ARGS__;\ IN(__VA_ARGS__) #define LD(...)\ LD __VA_ARGS__;\ IN(__VA_ARGS__) template <class T> void scan(T a) { cin >> a; } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(long double &a) { cin >> a; } void scan(char a[]) { scanf("%s", a); } void scan(string &a) { cin >> a; } template <class T> void scan(V<T> &); template <class T, class L> void scan(pair<T, L> &); template <class T> void scan(V<T> &a) { for(auto &i : a) scan(i); } template <class T, class L> void scan(pair<T, L> &p){ scan(p.first); scan(p.second); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &... tail) { scan(head); IN(tail...); } template <class T> inline void print(T x){ cout << x << '\n';} struct inputoutputfaster{ inputoutputfaster(){ ios::sync_with_stdio(false);\ cin.tie(nullptr); cout << fixed << setprecision(15); } }inputoutputfaster_; template <class T> V<T> press(V<T> &x){ V<T> res = x; sort(all(res)); res.erase(unique(all(res)), res.end()); REP(i, SZ(x)){ x[i] = lower_bound(all(res), x[i]) - res.begin(); } return res; } template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b; return true; }return false; } template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b; return true; }return false; } inline void Yes(bool b = true) {cout << (b ? "Yes" : "No") << '\n';} inline void YES(bool b = true) {cout << (b ? "YES" : "NO") << '\n';} inline void err(bool b = true) {if(b) {cout << -1 << '\n'; exit(0);}} template<class T> inline void fin(bool b = true, T e = 0) {if(b) {cout << e << '\n'; exit(0);}} template<class T> T divup(T x, T y) {return (x+(y-1))/y;} template <typename T> T pow(T a, long long n, T e = 1) {T ret = e; while (n) {if (n & 1) ret *= a; a *= a; n >>= 1; } return ret; } const ll INF = 1e18; #pragma endregion // Graph Template struct Edge{ ll to,cost; Edge(ll to,ll cost):to(to),cost(cost){} bool operator < (const Edge& a) const{ return cost < a.cost; } }; using Graph = VV<>; using WGraph = VV<Edge>; void Read_Graph(Graph &g, int m, bool directed = false){ REP(i, m){ LL(u, v); u--; v--; g[u].pb(v); if(!directed) g[v].pb(u); } } void Read_Tree(Graph &g, bool directed = false) {Read_Graph(g, SZ(g) - 1, directed);} void Read_Graph(WGraph &g, int m, bool directed = false){ REP(i, m){ LL(u, v, c); u--; v--; g[u].pb({v, c}); if(!directed) g[v].pb({u, c}); } } void Read_Tree(WGraph &g, bool directed = false) {Read_Graph(g, SZ(g) - 1, directed);} //grid int n; int dx[4] = {1,0,-1,0}; int dy[4] = {0,1,0,-1}; int ddx[8] = {1,1,0,-1,-1,-1,0,1,}; int ddy[8] = {0,1,1,1,0,-1,-1,-1}; inline bool inside(int x, int y) {return x >= 0 and x < n and y >= 0 and y < n;} int gtoi(int x, int y){return x * n + y;} //s始点のdijkstraを行い、各点のsからの距離を返す //g:WGraph, s:始点(0-indexed) V<> dijkstra(WGraph g, int s){ V<> dist(SZ(g), INF); priority_queue<P,vector<P>,greater<P>> que; dist[s] = 0; que.push(P(0, s)); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(dist[v] < p.first) continue; REP(i,SZ(g[v])){ Edge e = g[v][i]; if(dist[e.to] > dist[v] + e.cost){ dist[e.to] = dist[v] + e.cost; que.push(P(dist[e.to],e.to)); } } } return dist; } int main(){ cin >> n; INT(m); assert(2 <= n and n <= 500 and 1 <= m and m <= n * n - 2); WGraph G(2 * n * n); VV<> data(n, V<>(n, 0)); REP(i, m){ INT(x, y, c); assert(1 <= c and c<= 1e9); assert(1 <= x and x <= n and 1 <= y and y <= n); x--; y--; assert(data[x][y] == 0); data[x][y] = c; } REP(i, n) REP(j, n){ REP(k, 4){ int nx = i + dx[k], ny = j + dy[k]; if(inside(nx, ny)){ G[gtoi(i, j)].pb({gtoi(nx, ny), data[nx][ny] + 1}); G[gtoi(i, j) + n * n].pb({gtoi(nx, ny) + n * n, data[nx][ny] + 1}); G[gtoi(i, j)].pb({gtoi(nx, ny) + n * n, 1}); } } } auto res = dijkstra(G, 0); print(res[2 * n * n - 1]); }