結果

問題 No.1222 -101
ユーザー masayoshi361
提出日時 2020-09-06 11:29:19
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 617 ms / 2,000 ms
コード長 12,124 bytes
コンパイル時間 2,486 ms
コンパイル使用メモリ 193,196 KB
実行使用メモリ 17,268 KB
最終ジャッジ日時 2024-11-29 06:57:11
合計ジャッジ時間 10,007 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/* #region header */
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "/Users/takakurashokichi/Desktop/atcoder/cxx-prettyprint-master/prettyprint.hpp"
void debug() { cout << endl; }
template <typename Head, typename... Tail>
void debug(Head H, Tail... T) {
cout << " " << H;
debug(T...);
}
#else
#define debug(...) 42
#endif
// types
using ll = long long;
using ull = unsigned long long;
using ld = long double;
typedef pair<ll, ll> Pl;
typedef pair<int, int> Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
typedef vector<char> vc;
template <typename T>
using mat = vector<vector<T>>;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef vector<vector<char>> vvc;
template <int mod>
struct modint {
int x;
modint() : x(0) {}
modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
modint &operator+=(const modint &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
modint &operator*=(const modint &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-x); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return x == p.x; }
bool operator!=(const modint &p) const { return x != p.x; }
modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, modint &a) {
int64_t t;
is >> t;
a = modint<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
// abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) \
for (ll i = (b - 1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((ll)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vprint(x) \
rep(i, x.size()) cout << x[i] << ' '; \
cout << endl
#define vsum(x) accumulate(all(x), 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
// functions
// gcd(0, x) fails.
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T>
T mypow(T x, ll n) {
T ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
x %= mod;
ret %= mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13);
x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
ll popcnt(ull x) { return __builtin_popcountll(x); }
// graph template
template <typename T>
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
bool operator<(const edge<T> &r) const { return cost < r.cost; }
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnWeightedGraph = vector<vector<int>>;
struct Timer {
clock_t start_time;
void start() { start_time = clock(); }
int lap() {
// return x ms.
return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;
}
};
/* #endregion*/
// constant
#define inf 1000000005
#define INF 4000000004000000000LL
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.000001;
const long double PI = 3.141592653589793;
// library
template <typename Monoid, typename OperatorMonoid = Monoid>
struct LazySegmentTree {
using F = function<Monoid(Monoid, Monoid)>;
using G = function<Monoid(Monoid, OperatorMonoid)>;
using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;
int sz, height;
vector<Monoid> data;
vector<OperatorMonoid> lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1,
const OperatorMonoid OM0)
: f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void set(int k, const Monoid &x) { data[k + sz] = x; }
void build() {
for (int k = sz - 1; k > 0; k--) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
}
inline void propagate(int k) {
if (lazy[k] != OM0) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
data[k] = reflect(k);
lazy[k] = OM0;
}
}
inline Monoid reflect(int k) {
return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
}
inline void recalc(int k) {
while (k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));
}
inline void thrust(int k) {
for (int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const OperatorMonoid &x) {
thrust(a += sz);
thrust(b += sz - 1);
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) lazy[l] = h(lazy[l], x), ++l;
if (r & 1) --r, lazy[r] = h(lazy[r], x);
}
recalc(a);
recalc(b);
}
Monoid query(int a, int b) {
thrust(a += sz);
thrust(b += sz - 1);
Monoid L = M1, R = M1;
for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = f(L, reflect(l++));
if (r & 1) R = f(reflect(--r), R);
}
return f(L, R);
}
Monoid operator[](const int &k) { return query(k, k + 1); }
template <typename C>
int find_subtree(int a, const C &check, Monoid &M, bool type) {
while (a < sz) {
propagate(a);
Monoid nxt = type ? f(reflect(2 * a + type), M)
: f(M, reflect(2 * a + type));
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <typename C>
int find_first(int a, const C &check) {
Monoid L = M1;
if (a <= 0) {
if (check(f(L, reflect(1))))
return find_subtree(1, check, L, false);
return -1;
}
thrust(a + sz);
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) {
Monoid nxt = f(L, reflect(a));
if (check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <typename C>
int find_last(int b, const C &check) {
Monoid R = M1;
if (b >= sz) {
if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);
return -1;
}
thrust(b + sz - 1);
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1) {
if (b & 1) {
Monoid nxt = f(reflect(--b), R);
if (check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
void show() {
rep(i, sz) cout << query(i, i + 1) << ' ';
cout << endl;
}
};
////condition
// x*em = x
//(x1x2)*m = (x1*m)(x2*m)  = +
//(x1*m1)*m2 = x*(m1×2m)
////X:monoid, M:operator
using X = mint;
using M = mint;
////
// auto fx = [](X x1, X x2){return min(x1, x2);};//min
// auto fx = [](X x1, X x2){return max(x1, x2);};//max
////
// auto fa = [](X x, M m){return m;};//replace
// auto fa = [](X x, M m){return m+x;};//sum
////
// auto fm = [](M m1, M m2){return m2;};//replace
// auto fm = [](M m1, M m2){return m1+m2;};//sum
////fp = m**n
// auto fp = [](M m, long long n){ return m * n; };//sum
// auto fp = [](M m, long long n){ return m; };//min or max
////example
// LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);
////range sum query
using P = pair<X, int>;
//// 
auto fx = [](P a, P b) {
return P(a.first + b.first, a.second + b.second);
}; // sum
//// 
auto fa = [](P a, M b) { return P(a.first * b, a.second); }; // replace
// auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add
////
// auto fm = [](M m1, M m2){return m2;};//replace
auto fm = [](M m1, M m2) { return m1 * m2; }; // a
//// ex.second = 1
// P ex = P(0, 0);//P(0, 1)
// LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);
int main() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << setprecision(20);
int n, m;
cin >> n >> m;
vl inv(n, -1), l(m), r(m), p(m);
vl nonZero(n + 1);
rep(i, m) {
cin >> l[i] >> r[i] >> p[i];
l[i]--;
r[i]--;
if (p[i] != 0) {
nonZero[l[i]]++;
nonZero[r[i] + 1]--;
}
inv[r[i]] = i;
}
rep(i, n) nonZero[i + 1] += nonZero[i];
auto f = [&](mint a, mint b) { return a + b; };
LazySegmentTree<P, M> seg(n + 1, fx, fa, fm, P(0, 0), 1);
rep(i, n + 1) seg.set(i, P(1, 1));
seg.build();
rep(i, 1, n + 1) {
if (nonZero[i - 1] > 0) {
seg.update(i, i + 1, 0);
if (inv[i - 1] == -1) {
seg.update(0, i, 2);
} else {
if (p[inv[i - 1]] == 0) {
seg.update(0, i, 2);
seg.update(0, l[inv[i - 1]] + 1, 0);
}
}
} else {
seg.update(i, i + 1, seg.query(0, i).first);
seg.update(0, i, 2);
if (inv[i - 1] != -1) {
if (p[inv[i - 1]] == 0) {
seg.update(0, l[inv[i - 1]] + 1, 0);
}
}
}
// seg.show();
}
print(seg.query(0, n + 1).first);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0