結果
問題 | No.1222 -101 |
ユーザー |
![]() |
提出日時 | 2020-09-06 11:29:19 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 617 ms / 2,000 ms |
コード長 | 12,124 bytes |
コンパイル時間 | 2,486 ms |
コンパイル使用メモリ | 193,196 KB |
実行使用メモリ | 17,268 KB |
最終ジャッジ日時 | 2024-11-29 06:57:11 |
合計ジャッジ時間 | 10,007 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 35 |
ソースコード
/* #region header */#pragma GCC optimize("Ofast")#include <bits/stdc++.h>using namespace std;#ifdef LOCAL#include "/Users/takakurashokichi/Desktop/atcoder/cxx-prettyprint-master/prettyprint.hpp"void debug() { cout << endl; }template <typename Head, typename... Tail>void debug(Head H, Tail... T) {cout << " " << H;debug(T...);}#else#define debug(...) 42#endif// typesusing ll = long long;using ull = unsigned long long;using ld = long double;typedef pair<ll, ll> Pl;typedef pair<int, int> Pi;typedef vector<ll> vl;typedef vector<int> vi;typedef vector<char> vc;template <typename T>using mat = vector<vector<T>>;typedef vector<vector<int>> vvi;typedef vector<vector<long long>> vvl;typedef vector<vector<char>> vvc;template <int mod>struct modint {int x;modint() : x(0) {}modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}modint &operator+=(const modint &p) {if ((x += p.x) >= mod) x -= mod;return *this;}modint &operator-=(const modint &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}modint &operator*=(const modint &p) {x = (int)(1LL * x * p.x % mod);return *this;}modint &operator/=(const modint &p) {*this *= p.inverse();return *this;}modint operator-() const { return modint(-x); }modint operator+(const modint &p) const { return modint(*this) += p; }modint operator-(const modint &p) const { return modint(*this) -= p; }modint operator*(const modint &p) const { return modint(*this) *= p; }modint operator/(const modint &p) const { return modint(*this) /= p; }bool operator==(const modint &p) const { return x == p.x; }bool operator!=(const modint &p) const { return x != p.x; }modint inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return modint(u);}modint pow(int64_t n) const {modint ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const modint &p) {return os << p.x;}friend istream &operator>>(istream &is, modint &a) {int64_t t;is >> t;a = modint<mod>(t);return (is);}static int get_mod() { return mod; }};// abreviations#define all(x) (x).begin(), (x).end()#define rall(x) (x).rbegin(), (x).rend()#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)#define rrep_(i, a_, b_, a, b, ...) \for (ll i = (b - 1), min_i = (a); i >= min_i; i--)#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)#define SZ(x) ((ll)(x).size())#define pb(x) push_back(x)#define eb(x) emplace_back(x)#define mp make_pair#define print(x) cout << x << endl#define vprint(x) \rep(i, x.size()) cout << x[i] << ' '; \cout << endl#define vsum(x) accumulate(all(x), 0LL)#define vmax(a) *max_element(all(a))#define vmin(a) *min_element(all(a))#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))// functions// gcd(0, x) fails.ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }template <class T>bool chmax(T &a, const T &b) {if (a < b) {a = b;return 1;}return 0;}template <class T>bool chmin(T &a, const T &b) {if (b < a) {a = b;return 1;}return 0;}template <typename T>T mypow(T x, ll n) {T ret = 1;while (n > 0) {if (n & 1) (ret *= x);(x *= x);n >>= 1;}return ret;}ll modpow(ll x, ll n, const ll mod) {ll ret = 1;while (n > 0) {if (n & 1) (ret *= x);(x *= x);n >>= 1;x %= mod;ret %= mod;}return ret;}uint64_t my_rand(void) {static uint64_t x = 88172645463325252ULL;x = x ^ (x << 13);x = x ^ (x >> 7);return x = x ^ (x << 17);}ll popcnt(ull x) { return __builtin_popcountll(x); }// graph templatetemplate <typename T>struct edge {int src, to;T cost;edge(int to, T cost) : src(-1), to(to), cost(cost) {}edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}edge &operator=(const int &x) {to = x;return *this;}bool operator<(const edge<T> &r) const { return cost < r.cost; }operator int() const { return to; }};template <typename T>using Edges = vector<edge<T>>;template <typename T>using WeightedGraph = vector<Edges<T>>;using UnWeightedGraph = vector<vector<int>>;struct Timer {clock_t start_time;void start() { start_time = clock(); }int lap() {// return x ms.return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;}};/* #endregion*/// constant#define inf 1000000005#define INF 4000000004000000000LL#define mod 1000000007LL#define endl '\n'typedef modint<mod> mint;const long double eps = 0.000001;const long double PI = 3.141592653589793;// librarytemplate <typename Monoid, typename OperatorMonoid = Monoid>struct LazySegmentTree {using F = function<Monoid(Monoid, Monoid)>;using G = function<Monoid(Monoid, OperatorMonoid)>;using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;int sz, height;vector<Monoid> data;vector<OperatorMonoid> lazy;const F f;const G g;const H h;const Monoid M1;const OperatorMonoid OM0;LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1,const OperatorMonoid OM0): f(f), g(g), h(h), M1(M1), OM0(OM0) {sz = 1;height = 0;while (sz < n) sz <<= 1, height++;data.assign(2 * sz, M1);lazy.assign(2 * sz, OM0);}void set(int k, const Monoid &x) { data[k + sz] = x; }void build() {for (int k = sz - 1; k > 0; k--) {data[k] = f(data[2 * k + 0], data[2 * k + 1]);}}inline void propagate(int k) {if (lazy[k] != OM0) {lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);data[k] = reflect(k);lazy[k] = OM0;}}inline Monoid reflect(int k) {return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);}inline void recalc(int k) {while (k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));}inline void thrust(int k) {for (int i = height; i > 0; i--) propagate(k >> i);}void update(int a, int b, const OperatorMonoid &x) {thrust(a += sz);thrust(b += sz - 1);for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) lazy[l] = h(lazy[l], x), ++l;if (r & 1) --r, lazy[r] = h(lazy[r], x);}recalc(a);recalc(b);}Monoid query(int a, int b) {thrust(a += sz);thrust(b += sz - 1);Monoid L = M1, R = M1;for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) L = f(L, reflect(l++));if (r & 1) R = f(reflect(--r), R);}return f(L, R);}Monoid operator[](const int &k) { return query(k, k + 1); }template <typename C>int find_subtree(int a, const C &check, Monoid &M, bool type) {while (a < sz) {propagate(a);Monoid nxt = type ? f(reflect(2 * a + type), M): f(M, reflect(2 * a + type));if (check(nxt))a = 2 * a + type;elseM = nxt, a = 2 * a + 1 - type;}return a - sz;}template <typename C>int find_first(int a, const C &check) {Monoid L = M1;if (a <= 0) {if (check(f(L, reflect(1))))return find_subtree(1, check, L, false);return -1;}thrust(a + sz);int b = sz;for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {if (a & 1) {Monoid nxt = f(L, reflect(a));if (check(nxt)) return find_subtree(a, check, L, false);L = nxt;++a;}}return -1;}template <typename C>int find_last(int b, const C &check) {Monoid R = M1;if (b >= sz) {if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);return -1;}thrust(b + sz - 1);int a = sz;for (b += sz; a < b; a >>= 1, b >>= 1) {if (b & 1) {Monoid nxt = f(reflect(--b), R);if (check(nxt)) return find_subtree(b, check, R, true);R = nxt;}}return -1;}void show() {rep(i, sz) cout << query(i, i + 1) << ' ';cout << endl;}};////condition 左から作用するイメージ// x*em = x//(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意//(x1*m1)*m2 = x*(m1×2m)////X:monoid, M:operatorusing X = mint;using M = mint;////モノイドのマージ// auto fx = [](X x1, X x2){return min(x1, x2);};//min// auto fx = [](X x1, X x2){return max(x1, x2);};//max////モノイドと作用素のマージ// auto fa = [](X x, M m){return m;};//replace// auto fa = [](X x, M m){return m+x;};//sum////作用素のマージ// auto fm = [](M m1, M m2){return m2;};//replace// auto fm = [](M m1, M m2){return m1+m2;};//sum////fp = m**n// auto fp = [](M m, long long n){ return m * n; };//sum// auto fp = [](M m, long long n){ return m; };//min or max////example// LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);////range sum queryusing P = pair<X, int>;////モノイドのマージ 範囲を持たせるauto fx = [](P a, P b) {return P(a.first + b.first, a.second + b.second);}; // sum////モノイドと作用素のマージ 範囲を持たせるauto fa = [](P a, M b) { return P(a.first * b, a.second); }; // replace// auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add////作用素のマージ(上と同じ)// auto fm = [](M m1, M m2){return m2;};//replaceauto fm = [](M m1, M m2) { return m1 * m2; }; // a////単位元 ex.second = 1// P ex = P(0, 0);//初期値はP(0, 1)にすること// LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);int main() {cin.tie(0);ios::sync_with_stdio(0);cout << setprecision(20);int n, m;cin >> n >> m;vl inv(n, -1), l(m), r(m), p(m);vl nonZero(n + 1);rep(i, m) {cin >> l[i] >> r[i] >> p[i];l[i]--;r[i]--;if (p[i] != 0) {nonZero[l[i]]++;nonZero[r[i] + 1]--;}inv[r[i]] = i;}rep(i, n) nonZero[i + 1] += nonZero[i];auto f = [&](mint a, mint b) { return a + b; };LazySegmentTree<P, M> seg(n + 1, fx, fa, fm, P(0, 0), 1);rep(i, n + 1) seg.set(i, P(1, 1));seg.build();rep(i, 1, n + 1) {if (nonZero[i - 1] > 0) {seg.update(i, i + 1, 0);if (inv[i - 1] == -1) {seg.update(0, i, 2);} else {if (p[inv[i - 1]] == 0) {seg.update(0, i, 2);seg.update(0, l[inv[i - 1]] + 1, 0);}}} else {seg.update(i, i + 1, seg.query(0, i).first);seg.update(0, i, 2);if (inv[i - 1] != -1) {if (p[inv[i - 1]] == 0) {seg.update(0, l[inv[i - 1]] + 1, 0);}}}// seg.show();}print(seg.query(0, n + 1).first);}