結果

問題 No.1222 -101
ユーザー masayoshi361masayoshi361
提出日時 2020-09-06 11:29:19
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 617 ms / 2,000 ms
コード長 12,124 bytes
コンパイル時間 2,486 ms
コンパイル使用メモリ 193,196 KB
実行使用メモリ 17,268 KB
最終ジャッジ日時 2024-11-29 06:57:11
合計ジャッジ時間 10,007 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 3 ms
6,820 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 275 ms
12,464 KB
testcase_11 AC 275 ms
12,404 KB
testcase_12 AC 354 ms
17,148 KB
testcase_13 AC 357 ms
17,164 KB
testcase_14 AC 359 ms
17,244 KB
testcase_15 AC 307 ms
14,920 KB
testcase_16 AC 330 ms
16,012 KB
testcase_17 AC 344 ms
16,752 KB
testcase_18 AC 307 ms
14,980 KB
testcase_19 AC 314 ms
15,564 KB
testcase_20 AC 335 ms
16,324 KB
testcase_21 AC 335 ms
16,180 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 2 ms
6,820 KB
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 2 ms
6,816 KB
testcase_27 AC 2 ms
6,820 KB
testcase_28 AC 2 ms
6,816 KB
testcase_29 AC 2 ms
6,816 KB
testcase_30 AC 2 ms
6,816 KB
testcase_31 AC 2 ms
6,816 KB
testcase_32 AC 617 ms
17,164 KB
testcase_33 AC 607 ms
17,184 KB
testcase_34 AC 145 ms
17,152 KB
testcase_35 AC 151 ms
17,200 KB
testcase_36 AC 150 ms
17,268 KB
testcase_37 AC 150 ms
17,024 KB
testcase_38 AC 151 ms
17,156 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region header */
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "/Users/takakurashokichi/Desktop/atcoder/cxx-prettyprint-master/prettyprint.hpp"
void debug() { cout << endl; }
template <typename Head, typename... Tail>
void debug(Head H, Tail... T) {
    cout << " " << H;
    debug(T...);
}
#else
#define debug(...) 42
#endif
// types
using ll = long long;
using ull = unsigned long long;
using ld = long double;
typedef pair<ll, ll> Pl;
typedef pair<int, int> Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
typedef vector<char> vc;
template <typename T>
using mat = vector<vector<T>>;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef vector<vector<char>> vvc;

template <int mod>
struct modint {
    int x;

    modint() : x(0) {}

    modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    modint &operator+=(const modint &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    modint &operator-=(const modint &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    modint &operator*=(const modint &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    modint &operator/=(const modint &p) {
        *this *= p.inverse();
        return *this;
    }

    modint operator-() const { return modint(-x); }

    modint operator+(const modint &p) const { return modint(*this) += p; }

    modint operator-(const modint &p) const { return modint(*this) -= p; }

    modint operator*(const modint &p) const { return modint(*this) *= p; }

    modint operator/(const modint &p) const { return modint(*this) /= p; }

    bool operator==(const modint &p) const { return x == p.x; }

    bool operator!=(const modint &p) const { return x != p.x; }

    modint inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return modint(u);
    }

    modint pow(int64_t n) const {
        modint ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, modint &a) {
        int64_t t;
        is >> t;
        a = modint<mod>(t);
        return (is);
    }

    static int get_mod() { return mod; }
};
// abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) \
    for (ll i = (b - 1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((ll)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vprint(x)                         \
    rep(i, x.size()) cout << x[i] << ' '; \
    cout << endl
#define vsum(x) accumulate(all(x), 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
// functions
// gcd(0, x) fails.
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
template <class T>
bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T>
T mypow(T x, ll n) {
    T ret = 1;
    while (n > 0) {
        if (n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}
ll modpow(ll x, ll n, const ll mod) {
    ll ret = 1;
    while (n > 0) {
        if (n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
        x %= mod;
        ret %= mod;
    }
    return ret;
}
uint64_t my_rand(void) {
    static uint64_t x = 88172645463325252ULL;
    x = x ^ (x << 13);
    x = x ^ (x >> 7);
    return x = x ^ (x << 17);
}
ll popcnt(ull x) { return __builtin_popcountll(x); }
// graph template
template <typename T>
struct edge {
    int src, to;
    T cost;

    edge(int to, T cost) : src(-1), to(to), cost(cost) {}

    edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

    edge &operator=(const int &x) {
        to = x;
        return *this;
    }

    bool operator<(const edge<T> &r) const { return cost < r.cost; }

    operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnWeightedGraph = vector<vector<int>>;
struct Timer {
    clock_t start_time;
    void start() { start_time = clock(); }
    int lap() {
        // return x ms.
        return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;
    }
};
/* #endregion*/
// constant
#define inf 1000000005
#define INF 4000000004000000000LL
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.000001;
const long double PI = 3.141592653589793;
// library
template <typename Monoid, typename OperatorMonoid = Monoid>
struct LazySegmentTree {
    using F = function<Monoid(Monoid, Monoid)>;
    using G = function<Monoid(Monoid, OperatorMonoid)>;
    using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;

    int sz, height;
    vector<Monoid> data;
    vector<OperatorMonoid> lazy;
    const F f;
    const G g;
    const H h;
    const Monoid M1;
    const OperatorMonoid OM0;

    LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1,
                    const OperatorMonoid OM0)
        : f(f), g(g), h(h), M1(M1), OM0(OM0) {
        sz = 1;
        height = 0;
        while (sz < n) sz <<= 1, height++;
        data.assign(2 * sz, M1);
        lazy.assign(2 * sz, OM0);
    }

    void set(int k, const Monoid &x) { data[k + sz] = x; }

    void build() {
        for (int k = sz - 1; k > 0; k--) {
            data[k] = f(data[2 * k + 0], data[2 * k + 1]);
        }
    }

    inline void propagate(int k) {
        if (lazy[k] != OM0) {
            lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
            lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
            data[k] = reflect(k);
            lazy[k] = OM0;
        }
    }

    inline Monoid reflect(int k) {
        return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
    }

    inline void recalc(int k) {
        while (k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));
    }

    inline void thrust(int k) {
        for (int i = height; i > 0; i--) propagate(k >> i);
    }

    void update(int a, int b, const OperatorMonoid &x) {
        thrust(a += sz);
        thrust(b += sz - 1);
        for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if (l & 1) lazy[l] = h(lazy[l], x), ++l;
            if (r & 1) --r, lazy[r] = h(lazy[r], x);
        }
        recalc(a);
        recalc(b);
    }

    Monoid query(int a, int b) {
        thrust(a += sz);
        thrust(b += sz - 1);
        Monoid L = M1, R = M1;
        for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if (l & 1) L = f(L, reflect(l++));
            if (r & 1) R = f(reflect(--r), R);
        }
        return f(L, R);
    }

    Monoid operator[](const int &k) { return query(k, k + 1); }

    template <typename C>
    int find_subtree(int a, const C &check, Monoid &M, bool type) {
        while (a < sz) {
            propagate(a);
            Monoid nxt = type ? f(reflect(2 * a + type), M)
                              : f(M, reflect(2 * a + type));
            if (check(nxt))
                a = 2 * a + type;
            else
                M = nxt, a = 2 * a + 1 - type;
        }
        return a - sz;
    }

    template <typename C>
    int find_first(int a, const C &check) {
        Monoid L = M1;
        if (a <= 0) {
            if (check(f(L, reflect(1))))
                return find_subtree(1, check, L, false);
            return -1;
        }
        thrust(a + sz);
        int b = sz;
        for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if (a & 1) {
                Monoid nxt = f(L, reflect(a));
                if (check(nxt)) return find_subtree(a, check, L, false);
                L = nxt;
                ++a;
            }
        }
        return -1;
    }

    template <typename C>
    int find_last(int b, const C &check) {
        Monoid R = M1;
        if (b >= sz) {
            if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);
            return -1;
        }
        thrust(b + sz - 1);
        int a = sz;
        for (b += sz; a < b; a >>= 1, b >>= 1) {
            if (b & 1) {
                Monoid nxt = f(reflect(--b), R);
                if (check(nxt)) return find_subtree(b, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }

    void show() {
        rep(i, sz) cout << query(i, i + 1) << ' ';
        cout << endl;
    }
};

////condition 左から作用するイメージ
// x*em = x
//(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意
//(x1*m1)*m2 = x*(m1×2m)
////X:monoid, M:operator
using X = mint;
using M = mint;
////モノイドのマージ
// auto fx = [](X x1, X x2){return min(x1, x2);};//min
// auto fx = [](X x1, X x2){return max(x1, x2);};//max
////モノイドと作用素のマージ
// auto fa = [](X x, M m){return m;};//replace
// auto fa = [](X x, M m){return m+x;};//sum
////作用素のマージ
// auto fm = [](M m1, M m2){return m2;};//replace
// auto fm = [](M m1, M m2){return m1+m2;};//sum
////fp = m**n
// auto fp = [](M m, long long n){ return m * n; };//sum
// auto fp = [](M m, long long n){ return m; };//min or max
////example
// LazySegTree<X, M> seg(n, fx, fa, fm, fp, ex, em);
////range sum query
using P = pair<X, int>;
////モノイドのマージ 範囲を持たせる
auto fx = [](P a, P b) {
    return P(a.first + b.first, a.second + b.second);
};  // sum
////モノイドと作用素のマージ 範囲を持たせる
auto fa = [](P a, M b) { return P(a.first * b, a.second); };  // replace
// auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add
////作用素のマージ(上と同じ)
// auto fm = [](M m1, M m2){return m2;};//replace
auto fm = [](M m1, M m2) { return m1 * m2; };  // a
////単位元 ex.second = 1
// P ex = P(0, 0);//初期値はP(0, 1)にすること
// LazySegmentTree<P, M> seg(n, fx, fa, fm, fp, ex, em);
int main() {
    cin.tie(0);
    ios::sync_with_stdio(0);
    cout << setprecision(20);
    int n, m;
    cin >> n >> m;
    vl inv(n, -1), l(m), r(m), p(m);
    vl nonZero(n + 1);
    rep(i, m) {
        cin >> l[i] >> r[i] >> p[i];
        l[i]--;
        r[i]--;

        if (p[i] != 0) {
            nonZero[l[i]]++;
            nonZero[r[i] + 1]--;
        }
        inv[r[i]] = i;
    }
    rep(i, n) nonZero[i + 1] += nonZero[i];
    auto f = [&](mint a, mint b) { return a + b; };
    LazySegmentTree<P, M> seg(n + 1, fx, fa, fm, P(0, 0), 1);
    rep(i, n + 1) seg.set(i, P(1, 1));
    seg.build();
    rep(i, 1, n + 1) {
        if (nonZero[i - 1] > 0) {
            seg.update(i, i + 1, 0);
            if (inv[i - 1] == -1) {
                seg.update(0, i, 2);
            } else {
                if (p[inv[i - 1]] == 0) {
                    seg.update(0, i, 2);
                    seg.update(0, l[inv[i - 1]] + 1, 0);
                }
            }
        } else {
            seg.update(i, i + 1, seg.query(0, i).first);
            seg.update(0, i, 2);
            if (inv[i - 1] != -1) {
                if (p[inv[i - 1]] == 0) {
                    seg.update(0, l[inv[i - 1]] + 1, 0);
                }
            }
        }
        // seg.show();
    }
    print(seg.query(0, n + 1).first);
}
0