結果
| 問題 |
No.677 10^Nの約数
|
| コンテスト | |
| ユーザー |
Kiri8128
|
| 提出日時 | 2020-09-06 16:38:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 36 ms / 2,000 ms |
| コード長 | 2,246 bytes |
| コンパイル時間 | 276 ms |
| コンパイル使用メモリ | 82,556 KB |
| 実行使用メモリ | 53,376 KB |
| 最終ジャッジ日時 | 2024-11-29 07:17:37 |
| 合計ジャッジ時間 | 1,581 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 17 |
ソースコード
def gcd(a, b):
while b: a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = y * y % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i * i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += i % 2 + (3 if i % 3 == 1 else 1)
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
def divisors(N):
pf = primeFactor(N)
ret = [1]
for p in pf:
ret_prev = ret
ret = []
for i in range(pf[p]+1):
for r in ret_prev:
ret.append(r * (p ** i))
return sorted(ret)
N = int(input())
print(*divisors(10 ** N), sep = "\n")
Kiri8128