結果

問題 No.1222 -101
ユーザー kimiyuki
提出日時 2020-09-06 17:50:27
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 156 ms / 2,000 ms
コード長 6,972 bytes
コンパイル時間 3,362 ms
コンパイル使用メモリ 203,532 KB
最終ジャッジ日時 2025-01-14 07:57:03
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/user/Library/modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "/home/user/Library/modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "/home/user/Library/modulus/mint.hpp"
/**
* @brief quotient ring / $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 4 "main.cpp"
using namespace std;
constexpr int64_t MOD = 1000000007;
mint<MOD> solve_zero(int n, int m, const vector<int>& l, const vector<int>& r) {
if (m < 10) {
cerr << "zero" << endl;
cerr << "n = " << n << endl;
cerr << "m = " << m << endl;
REP (i, m) {
cerr << "[" << l[i] << ", " << r[i] << ")" << endl;
}
}
vector<int> event(n + 1, -1);
REP (j, m) {
event[r[j]] = l[j];
}
vector<mint<MOD> > dp(n + 2);
dp[0] = 1;
int j = 0;
mint<MOD> cur = dp[0];
REP (i, n + 1) {
for (; j < event[i] + 1; ++ j) {
cur -= mint<MOD>(2).pow(i - j) * dp[j];
}
dp[i + 1] = cur;
cur = 2 * cur + dp[i + 1];
}
if (m < 10) {
cerr << "ans = " << dp[n + 1] << endl;
}
return dp[n + 1];
}
mint<MOD> solve_nonzero(int n, int m, const vector<int>& l, const vector<int>& r, const vector<int>& p) {
if (m < 10) {
cerr << "nonzero" << endl;
cerr << "n = " << n << endl;
cerr << "m = " << m << endl;
REP (i, m) {
cerr << "[" << l[i] << ", " << r[i] << ") " << p[i] << endl;
}
}
return mint<MOD>(2).pow(n - m);
}
mint<MOD> solve(int n, int m, const vector<int>& l, const vector<int>& r, const vector<int>& p) { // [l, r)
// list events
vector<vector<int> > event_l(n + 1);
vector<int> event_r(n + 1, -1);
REP (j, m) {
event_l[l[j]].push_back(j);
event_r[r[j]] = j;
}
// split queries
int n0 = 0;
int m0 = 0;
vector<int> l0, r0;
int n1 = 0;
int m1 = 0;
vector<int> l1, r1, p1;
vector<int> table(m, -1);
int cnt = 0;
REP (i, n + 1) {
for (int j : event_l[i]) {
if (p[j] == 0) {
int k = m0;
table[j] = k;
++ m0;
l0.push_back(n0);
r0.push_back(-1);
} else {
int k = m1;
table[j] = k;
++ m1;
l1.push_back(n1);
r1.push_back(-1);
p1.push_back(p[j]);
++ cnt;
}
}
if (event_r[i] != -1) {
int j = event_r[i];
int k = table[j];
if (p[j] == 0) {
r0[k] = n0;
} else {
r1[k] = n1;
-- cnt;
}
}
if (i < n) {
if (cnt) {
++ n1;
} else {
++ n0;
}
}
}
return solve_zero(n0, m0, l0, r0) * solve_nonzero(n1, m1, l1, r1, p1);
}
// generated by online-judge-template-generator v4.6.0 (https://github.com/online-judge-tools/template-generator)
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
constexpr char endl = '\n';
int N, M;
cin >> N >> M;
vector<int> L(M), R(M), P(M);
REP (i, M) {
cin >> L[i] >> R[i] >> P[i];
-- L[i];
}
auto ans = solve(N, M, L, R, P);
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0