結果
| 問題 |
No.1392 Don't be together
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-09-09 11:16:15 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 546 ms / 2,000 ms |
| コード長 | 4,476 bytes |
| コンパイル時間 | 533 ms |
| コンパイル使用メモリ | 82,444 KB |
| 実行使用メモリ | 127,044 KB |
| 最終ジャッジ日時 | 2024-12-14 14:26:03 |
| 合計ジャッジ時間 | 13,019 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
def cmb(n, r, mod):#コンビネーションの高速計算
if ( r<0 or r>n ):
return 0
r = min(r, n-r)
return g1[n] * g2[r] * g2[n-r] % mod
N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
def _ntt(f,L,reverse=False):
F=[f[i] for i in range(L)]
n = L.bit_length() - 1
base = omega
if reverse:
base = rev_omega
if not n:
return F
size = 2**n
wj = pow(base,2**22,mod)
res = [0]*2**n
for i in range(n,0,-1):
use_omega = pow(base,2**(22+i-n),mod)
res = [0]*2**n
size //= 2
w = 1
for j in range(0,L//2,size):
for a in range(size):
res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod
t = (w * wj) % mod
res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod
w = (w * use_omega) % mod
F = res
return res
def ntt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L)
return F
def intt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L,reverse=True)
inv = pow(L,mod-2,mod)
for i in range(L):
F[i] *= inv
F[i] %= mod
return F
def convolve(f,g,limit):
l = len(f)+len(g)-1
L = 1<<((l-1).bit_length())
F = ntt(f,L)
G = ntt(g,L)
H = [(F[i] * G[i]) % mod for i in range(L)]
h = intt(H,L)
return h[:limit]
def inverse(f,limit):
assert(f[0]!=0)
l = len(f)
L = 1<<((l-1).bit_length())
n = L.bit_length()-1
f = f[:L]
f+=[0]*(L-len(f))
res = [pow(f[0],mod-2,mod)]
for i in range(1,n+1):
h = convolve(res,f[:2**i],2**i)
h = [(-h[i]) % mod for i in range(2**i)]
h[0] = (h[0]+2) % mod
res = convolve(res,h,2**i)
return res[:limit]
def integral(f,limit):
res = [0]+[(f[i] * inv[i+1]) % mod for i in range(len(f)-1)]
return res[:limit]
def diff(f,limit):
res = [(f[i+1] * (i+1)) % mod for i in range(len(f)-1)]+[0]
return res[:limit]
def log(f,limit):
res = convolve(diff(f,limit),inverse(f,limit),limit)
return integral(res,limit)
def exp(f,limit):
l = len(f)
L = 1<<((l-1).bit_length())
n = L.bit_length()-1
f = f[:L]
f+=[0]*(L-len(f))
res = [1]
for i in range(1,n+1):
res += [0]*2**(i-1)
g = log(res,2**i)
h = [(f[j]-g[j])%mod for j in range(2**i)]
h[0] = (h[0]+1) % mod
res =convolve(res,h,2**i)
return res[:limit]
def poly_pow_exp(f,k,limit):
l = len(f)
L = 1<<((l-1).bit_length())
n = L.bit_length()-1
f = f[:L]
f+=[0]*(L-len(f))
g = log(f,limit)
g = [(k * g[i]) % mod for i in range(len(g))]
h = exp(g,limit)
return h[:limit]
N,M = map(int,input().split())
P = list(map(int,input().split()))
P = [P[i]-1 for i in range(N)]
cycle = []
used = [False]*N
for i in range(N):
if not used[i]:
used[i] = True
c = 1
pos = i
while not used[P[pos]]:
pos = P[pos]
used[pos] = True
c += 1
cycle.append(c)
n = len(cycle)
a = [0]*(N+1)
for c in cycle:
a[c-1] += 1
f = [0 for i in range(N+1)]
for i in range(1,N+1):
for j in range(1,(N//i)+1):
f[i*j] += - a[i] * inv[j]
f[i*j] %= mod
f = exp(f,N+1)
nf = [0 for i in range(N+1)]
sign = pow(-1,n)
for i in range(N+1-n):
nf[i+n] = f[i] * sign
nf[i+n] %= mod
f = nf
g = [(f[N-i] * g1[N-i]) % mod for i in range(N+1)]
e_x = [g2[i] for i in range(N+1)]
g_e_x = convolve(g,e_x,N+1)
f = [(g_e_x[N-i] * g2[i]) % mod for i in range(N+1)]
for i in range(1,N+1,2):
f[i] = (-f[i]) % mod
f = [f[i+n] for i in range(N-n+1)]
g = [g2[i+1] for i in range(N+1)]
g = poly_pow_exp(g,M,N+1)
poly_Stirling = [0 for i in range(N+1)]
for i in range(N-M+1):
poly_Stirling[i+M] = (g[i] * g1[i+M]) % mod
poly_Stirling[i+M] = (g2[M] * poly_Stirling[i+M]) % mod
ans = 0
for j in range(N-n+1):
ans += poly_Stirling[n+j] * f[j]
ans %= mod
print((ans*(-1)**N)%mod)