結果
問題 | No.1073 無限すごろく |
ユーザー |
![]() |
提出日時 | 2020-09-10 20:08:47 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 2,580 bytes |
コンパイル時間 | 2,861 ms |
コンパイル使用メモリ | 198,456 KB |
最終ジャッジ日時 | 2025-01-14 09:17:34 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
//#include <tourist>#include <bits/stdc++.h>//#include <atcoder/all>using namespace std;//using namespace atcoder;typedef long long ll;typedef unsigned int uint;typedef unsigned long long ull;typedef pair<ll, ll> p;const int INF = 1e9;const ll LINF = ll(1e18);const int MOD = 1000000007;const int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0};const int Dx[8] = {0, 1, 1, 1, 0, -1, -1, -1}, Dy[8] = {-1, -1, 0, 1, 1, 1, 0, -1};#define yes cout << "Yes" << endl#define YES cout << "YES" << endl#define no cout << "No" << endl#define NO cout << "NO" << endl#define rep(i, n) for (int i = 0; i < n; i++)#define FOR(i, m, n) for (int i = m; i < n; i++)#define ALL(v) v.begin(), v.end()#define debug(v) \cout << #v << ":"; \for (auto x : v) \{ \cout << x << ' '; \} \cout << endl;template <class T>bool chmax(T &a, const T &b){if (a < b){a = b;return 1;}return 0;}template <class T>bool chmin(T &a, const T &b){if (b < a){a = b;return 1;}return 0;}//cout<<fixed<<setprecision(15);有効数字15桁//-std=c++14//g++ yarudake.cpp -std=c++17 -I .ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }typedef vector<ll> Array;typedef vector<Array> Matrix;ll mod_pow(ll x, ll n, ll mod){ll res = 1LL;while (n > 0){if (n & 1)res = res * x % mod;x = x * x % mod;n >>= 1;}return res;}ll mod_inv(ll x, ll mod){return mod_pow(x, mod - 2, mod);}Matrix mIdentity(ll n){Matrix A(n, Array(n));for (int i = 0; i < n; ++i)A[i][i] = 1;return A;}Matrix mMul(const Matrix &A, const Matrix &B, ll mod){Matrix C(A.size(), Array(B[0].size()));for (int i = 0; i < C.size(); ++i)for (int j = 0; j < C[i].size(); ++j)for (int k = 0; k < A[i].size(); ++k)(C[i][j] += (A[i][k] % mod) * (B[k][j] % mod)) %= mod;return C;}// O( n^3 log e )Matrix mPow(const Matrix &A, ll e, ll mod){return e == 0 ? mIdentity(A.size()) : e % 2 == 0 ? mPow(mMul(A, A, mod), e / 2, mod) : mMul(A, mPow(A, e - 1, mod), mod);}int main(){cin.tie(0);ios::sync_with_stdio(false);ll n;cin >> n;Matrix x(6, Array(6, 0));for(int i=0;i<6;i++){x[0][i]=mod_inv(6,MOD);}for(int i=1;i<6;i++){x[i][i-1]=1;}Matrix xn=mPow(x,n,MOD);cout<<xn[0][0]<<"\n";}