結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー | SHIJOU |
提出日時 | 2020-09-10 22:13:22 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 520 ms / 3,000 ms |
コード長 | 13,929 bytes |
コンパイル時間 | 4,051 ms |
コンパイル使用メモリ | 236,952 KB |
実行使用メモリ | 17,692 KB |
最終ジャッジ日時 | 2024-12-24 04:05:35 |
合計ジャッジ時間 | 11,145 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 519 ms
17,692 KB |
testcase_01 | AC | 510 ms
17,692 KB |
testcase_02 | AC | 520 ms
17,560 KB |
testcase_03 | AC | 57 ms
12,900 KB |
testcase_04 | AC | 65 ms
13,040 KB |
testcase_05 | AC | 19 ms
14,712 KB |
testcase_06 | AC | 13 ms
11,064 KB |
testcase_07 | AC | 13 ms
11,064 KB |
testcase_08 | AC | 93 ms
12,000 KB |
testcase_09 | AC | 493 ms
17,556 KB |
testcase_10 | AC | 285 ms
14,296 KB |
testcase_11 | AC | 448 ms
17,668 KB |
testcase_12 | AC | 407 ms
17,652 KB |
testcase_13 | AC | 345 ms
14,528 KB |
testcase_14 | AC | 220 ms
14,264 KB |
testcase_15 | AC | 269 ms
14,416 KB |
testcase_16 | AC | 243 ms
14,400 KB |
testcase_17 | AC | 99 ms
12,004 KB |
testcase_18 | AC | 422 ms
17,552 KB |
testcase_19 | AC | 408 ms
17,520 KB |
testcase_20 | AC | 352 ms
14,536 KB |
testcase_21 | AC | 446 ms
17,536 KB |
testcase_22 | AC | 339 ms
14,360 KB |
testcase_23 | AC | 14 ms
11,092 KB |
testcase_24 | AC | 13 ms
11,044 KB |
testcase_25 | AC | 15 ms
11,108 KB |
ソースコード
//#define _GLIBCXX_DEBUG #include <bits/stdc++.h> #define rep(i, n) for(int i=0; i<n; ++i) #define all(v) v.begin(), v.end() #define rall(v) v.rbegin(), v.rend() using namespace std; using ll = int64_t; using ld = long double; using P = pair<int, int>; using vs = vector<string>; using vi = vector<int>; using vvi = vector<vi>; template<class T> using PQ = priority_queue<T>; template<class T> using PQG = priority_queue<T, vector<T>, greater<T> >; const int INF = 0xccccccc; const ll LINF = 0xcccccccccccccccLL; template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true);} template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true);} template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p) { return is >> p.first >> p.second;} template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { return os << p.first << ' ' << p.second;} namespace fft { constexpr unsigned int modulo1 = 998244353; constexpr unsigned int modulo2 = 1000000007; constexpr long double PI = acos(-1); struct modint_base {}; template<class C> using is_modint = is_base_of<modint_base, C>; template<class C> using is_modint_t = enable_if_t<is_modint<C>::value>; template<class C> using is_complex = typename conditional<is_same<C, complex<double>>::value || is_same<C, complex<long double>>::value, true_type, false_type>::type; //begin NTT template<int m> struct mint : modint_base { unsigned int x; static constexpr int mod() {return m;} static constexpr unsigned int umod() {return m;} mint():x(0) {} mint(int64_t x_) { int64_t v = int64_t(x_ % umod()); if(v < 0) v += umod(); x = (unsigned int)v; } static mint row(int v) { mint v_; v_.x = v; return v_; } mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= umod()) x -= umod(); return *this; } mint& operator-=(const mint a) { if ((x += umod()-a.x) >= umod()) x -= umod(); return *this; } mint& operator*=(const mint a) { uint64_t z = x; z *= a.x; x = (unsigned int)(z % umod()); return *this; } mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint &operator++() { x++; if(x == umod()) x = 0; return *this; } mint &operator--() { if(x == 0) x = umod(); x--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint pow(int64_t t) const { mint x_ = *this, r = 1; while(t) { if(t&1) r *= x_; x_ *= x_; t >>= 1; } return r; } mint inv() const { return pow(umod()-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) {return mint(*this) /= a;} friend bool operator==(const mint &a, const mint &b) {return a.x == b.x;} friend bool operator!=(const mint &a, const mint &b) {return a.x != b.x;} }; constexpr int64_t safe_mod(int64_t x, int64_t m) { x %= m; if(x < 0) x += m; return x; } constexpr int64_t pow_mod_constexpr(int64_t x, int64_t n, int m) { if(m == 1) return 0; unsigned int _m = (unsigned int)(m); uint64_t r = 1; uint64_t y = safe_mod(x, m); while(n) { if(n&1) r = (r*y)%_m; y = (y*y)%_m; n >>= 1; } return r; } constexpr int primitive_root_constexpr(int m) { if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m-1)>>1; while(~x&1) x >>= 1; for(int i = 3; (int64_t)(i)*i <= x; i += 2) { if(x%i == 0) { divs[cnt++] = i; while(x%i == 0) x /= i; } } if(x > 1) divs[cnt++] = x; for(int g = 2;; g++) { bool ok = true; for(int i = 0; i < cnt; i++) { if(pow_mod_constexpr(g, (m-1)/divs[i], m) == 1) { ok = false; break; } } if(ok) return g; } } template<int m> constexpr int primitive_root = primitive_root_constexpr(m); constexpr pair<int64_t, int64_t> inv_gcd(int64_t a, int64_t b) { a = safe_mod(a, b); if(a == 0) return {b, 0}; int64_t s = b, t = a; int64_t m0 = 0, m1 = 1; while(t) { int64_t u = s/t; s -= t*u; m0 -= m1*u; int64_t tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b/s; return {s, m0}; } int ceil_pow2(int n) { int x = 0; while((1U << x) < (unsigned int)(n)) x++; return x; } template<class mint, is_modint_t<mint>* = nullptr> void butterfly(vector<mint> &ary) { static constexpr int g = primitive_root<mint::mod()>; int n = int(ary.size()); int h = ceil_pow2(n); static bool first = true; static mint sum_e[30]; if(first) { first = false; mint es[30], ies[30]; int cnt2 = __builtin_ctz(mint::mod()-1); mint e = mint(g).pow((mint::mod()-1)>>cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { es[i-2] = e; ies[i-2] = ie; e *= e; ie *= ie; } mint now(1); for(int i = 0; i < cnt2-2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for(int ph = 1; ph <= h; ph++) { int w = 1<<(ph-1), p = 1<<(h-ph); mint now(1); for(int s = 0; s < w; s++) { int offset = s << (h-ph+1); for(int i = 0; i < p; i++) { mint l = ary[i+offset]; mint r = ary[i+offset+p] * now; ary[i+offset] = l+r; ary[i+offset+p] = l-r; } now *= sum_e[__builtin_ctz(~(unsigned int)(s))]; } } } template<class mint, is_modint_t<mint>* = nullptr> void butterfly_inv(vector<mint> &ary) { static constexpr int g = primitive_root<mint::mod()>; int n = int(ary.size()); int h = ceil_pow2(n); static bool first = true; static mint sum_ie[30]; if(first) { first = false; mint es[30], ies[30]; int cnt2 = __builtin_ctz(mint::mod()-1); mint e = mint(g).pow((mint::mod()-1)>>cnt2), ie = e.inv(); for(int i = cnt2; i >= 2; i--) { es[i-2] = e; ies[i-2] = ie; e *= e; ie *= ie; } mint now(1); for(int i = 0; i < cnt2-2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for(int ph = h; ph >= 1; ph--) { int w = 1<<(ph-1), p = 1<<(h-ph); mint inow(1); for(int s = 0; s < w; s++) { int offset = s<<(h-ph+1); for(int i = 0; i < p; i++) { mint l = ary[i+offset]; mint r = ary[i+offset+p]; ary[i+offset] = l+r; ary[i+offset+p] = (uint64_t)(mint::mod() + l.x - r.x) * inow.x; } inow *= sum_ie[__builtin_ctz(~(unsigned int)(s))]; } } } template<class mint, is_modint_t<mint>* = nullptr> vector<mint> convolution(vector<mint> a, vector<mint> b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(min(n, m) <= 60) { if(n < m) { swap(n, m); swap(a, b); } vector<mint> ans(n+m-1); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { ans[i+j] += a[i] * b[j]; } } return ans; } int z = 1<<ceil_pow2(n+m-1); a.resize(z); butterfly(a); b.resize(z); butterfly(b); for(int i = 0; i < z; i++) { a[i] *= b[i]; } butterfly_inv(a); a.resize(n+m-1); mint iz = mint(z).inv(); for(int i = 0; i < n+m-1; i++) a[i] *= iz; return a; } template<unsigned int mod = modulo1, class T, enable_if_t<is_integral<T>::value>* = nullptr> vector<T> convolution(const vector<T> &a, const vector<T> &b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; using Mint = mint<mod>; vector<Mint> a2(n), b2(m); for(int i = 0; i < n; i++) { a2[i] = Mint(a[i]); } for(int i = 0; i < m; i++) { b2[i] = Mint(b[i]); } vector<Mint> c2 = convolution<Mint>(move(a2), move(b2)); vector<T> c(n+m-1); for(int i = 0; i < n+m-1; i++) c[i] = c2[i].x; return c; } vector<int64_t> convolution_ll(const vector<int64_t> &a, vector<int64_t> &b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; static constexpr uint64_t MOD1 = 754974721; // 2^24 static constexpr uint64_t MOD2 = 167772161; // 2^25 static constexpr uint64_t MOD3 = 469762049; // 2^26 static constexpr uint64_t M2M3 = MOD2 * MOD3; static constexpr uint64_t M1M3 = MOD1 * MOD3; static constexpr uint64_t M1M2 = MOD1 * MOD2; static constexpr uint64_t M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr uint64_t i1 = inv_gcd(M2M3, MOD1).second; static constexpr uint64_t i2 = inv_gcd(M1M3, MOD2).second; static constexpr uint64_t i3 = inv_gcd(M1M2, MOD3).second; vector<int64_t> c1 = convolution<MOD1>(a, b); vector<int64_t> c2 = convolution<MOD2>(a, b); vector<int64_t> c3 = convolution<MOD3>(a, b); vector<int64_t> c(n+m-1); for(int i = 0; i < n+m-1; i++) { uint64_t x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; int64_t diff = c1[i] - safe_mod(int64_t(x), int64_t(MOD1)); if(diff < 0) diff += MOD1; static constexpr uint64_t offset[5] = {0, 0, M1M2M3, 2*M1M2M3, 3*M1M2M3}; x -= offset[diff%5]; c[i] = x; } return c; } //begin FFT template<class Float, enable_if_t<is_floating_point<Float>::value>* = nullptr> void butterfly(vector<complex<Float>>& ary) { int n = int(ary.size()); int h = ceil_pow2(n); using Complex = complex<Float>; static bool first = true; static Complex sum_e[30]; if(first) { first = false; Complex now = 1.0; for(int i = 0; i < 28; i++) { Complex es = polar(Float(1.0), Float(PI)/(1<<(i+1))); sum_e[i] = es * now; now *= conj(es); } } for(int ph = 1; ph <= h; ph++) { int w = 1<<(ph-1), p = 1<<(h-ph); Complex now = Complex(1.0, 0); for(int s = 0; s < w; s++) { int offset = s<<(h-ph+1); for(int i = 0; i < p; i++) { Complex l = ary[i+offset]; Complex r = ary[i+offset+p] * now; ary[i+offset] = l+r; ary[i+offset+p] = l-r; } now *= sum_e[__builtin_ctz(~(unsigned int)(s))]; } } } template<class Float, enable_if_t<is_floating_point<Float>::value>* = nullptr> void butterfly_inv(vector<complex<Float>> &ary) { int n = int(ary.size()); int h = ceil_pow2(n); using Complex = complex<Float>; static bool first = true; static Complex sum_ie[30]; if(first) { first = false; Complex now = 1.0; for(int i = 0; i < 28; i++) { Complex es = polar(Float(1.0), Float(PI)/(1<<(i+1))); sum_ie[i] = conj(es) * now; now *= es; } } for(int ph = h; ph >= 1; ph--) { int w = 1<<(ph-1), p = 1<<(h-ph); Complex inow = Complex(1.0, 0); for(int s = 0; s < w; s++) { int offset = s<<(h-ph+1); for(int i = 0; i < p; i++) { Complex l = ary[i+offset]; Complex r = ary[i+offset+p]; ary[i+offset] = l+r; ary[i+offset+p] = (l-r) * inow; } inow *= sum_ie[__builtin_ctz(~(unsigned int)(s))]; } } Complex in(1.0/n, 0); for(int i = 0; i < n; i++) ary[i] *= in; } template<class Complex, enable_if_t<is_complex<Complex>::value>* = nullptr> vector<Complex> convolution(vector<Complex> a, vector<Complex> b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; if(min(n, m) <= 60) { if(n < m) { swap(n, m); swap(a, b); } vector<Complex> ans(n+m-1); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { ans[i+j] += a[i] * b[j]; } } return ans; } int z = 1<<ceil_pow2(n+m-1); a.resize(z); butterfly(a); b.resize(z); butterfly(b); for(int i = 0; i < z; i++) { a[i] *= b[i]; } butterfly_inv(a); a.resize(n+m-1); return a; } template<class Float, enable_if_t<is_floating_point<Float>::value>* = nullptr> vector<Float> convolution(vector<Float> &a, vector<Float> &b) { int n = int(a.size()), m = int(b.size()); if(!n || !m) return {}; using Complex = complex<Float>; vector<Complex> a2(n), b2(m); for(int i = 0; i < n; i++) a2[i] = Complex(a[i], 0); for(int i = 0; i < m; i++) b2[i] = Complex(b[i], 0); vector<Complex> c2 = convolution(move(a2), move(b2)); vector<Float> c(n+m-1); for(int i = 0; i < n+m-1; i++) c[i] = c2[i].real(); return c; } //modulo1 998244353 //modulo2 1000000007 //vector<mint<m>> convolution(vector<mint<m>>, vector<mint<m>>) //vector<T> convolution<mod = modulo1>(vector<T>&, vector<T>&) ##is_integral<T>::value == true //vector<int64_t> convolution_ll(vector<int64_t>&, vector<int64_t>&) //vector<Complex> convolution(vector<Complex>, vector<Complex>) //vector<Float> convolution(vector<Float>&, vector<Float>&) } // namespace fft struct combination { using Mint = fft::mint<fft::modulo1>; vector<Mint> frac, ifrac; combination(int n):frac(n+1), ifrac(n+1) { frac[0] = 1; for (int i = 1; i <= n; ++i) frac[i] = frac[i-1]*i; ifrac[n] = frac[n].inv(); for (int i = n; i >= 1; --i) ifrac[i-1] = ifrac[i]*i; } Mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return frac[n]*ifrac[k]*ifrac[n-k]; } } c(1000000); #define AL 26 //head string s; int cnt[AL]; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> s; rep(i, s.size()) cnt[s[i]-'a']++; vector<fft::mint<fft::modulo1>> ans(1, 1); sort(cnt, cnt+AL); vector<fft::mint<fft::modulo1>> now; rep(i, AL) { if(!cnt[i]) continue; rep(j, ans.size()) { ans[j] *= c.ifrac[j]; } while(now.size() < cnt[i]+1) now.emplace_back(c.ifrac[now.size()]); ans = fft::convolution(ans, now); rep(j, ans.size()) ans[j] *= c.frac[j]; } cout << accumulate(ans.begin()+1, ans.end(), fft::mint<fft::modulo1>()).x << endl; }