結果

問題 No.526 フィボナッチ数列の第N項をMで割った余りを求める
ユーザー Saikyo-KazuneSaikyo-Kazune
提出日時 2020-09-10 23:13:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 23,904 bytes
コンパイル時間 1,970 ms
コンパイル使用メモリ 220,364 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-06 13:46:29
合計ジャッジ時間 2,632 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>

#include <boost/rational.hpp>
*/
//#include <atcoder/all>
#include <bits/stdc++.h>
using namespace std;
//using namespace atcoder;
#define _GLIBCXX_DEBUG
#define rep(i,t) for (ll i = (ll)(0); i < (ll)(t); i++)
#define rep2(i,s,t) for (ll i = (ll)(s); i < (ll)(t); i++)
#define rep3(i,t) for (ll i = (ll)(1); i <= (ll)(t); i++)
#define rep4(i,s,t) for (ll i = (ll)(s); i <= (ll)(t); i++)
#define repr(i,t) for (ll i = (t-1); i>=(0);i--)
#define repr2(i,s,t) for (ll i = (t-1); i>=(s);i--)
#define repr3(i,t) for (ll i = (t); i>=(1);i--)
#define repr4(i,s,t) for (ll i = (t); i>=(s);i--)
using ll = long long;
using ld = long double;
using ull = unsigned long long;
using uint = unsigned;
using pcc =pair<char,char>;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using pdd = pair<double,double>;
using tuplis = array<ll,3>;
template<class T> using pq = priority_queue<T,vector<T>,greater<T>>;
const ll LINF = 1e18;
const ll MINF = 1e15;
const int INF = 1e9+1e5;
//const int mod=1000000007;
const int mod=998244353;



const ld DINF = numeric_limits<ld>::infinity();
const ld EPS=1e-9;
const ld PI=acos(-1);
//const ll dx[] ={0,1,0,-1,1,-1,1,-1};
//const ll dy[] ={1,0,-1,0,1,1,-1,-1};
inline const bool ingrid(const int i,const int j,const int H,const int W){return i>=0&&i<H&&j>=0&&j<W;}
const ll dx[] ={0,1,0,-1};
const ll dy[] ={1,0,-1,0};
const bool is_low(char c){ return('a'<=c)&&(c<='z');}
const bool is_upp (char c) {return('A'<=c)&&(c<='Z');}
#define each1(i,a) for(auto&& i:a)
#define each2(x,y,a) for(auto&& [x,y]:a)
#define each3(x,y,z,a) for(auto&& [x,y,z]:a)
#define rrep(n) for(ll i=(n);i--;)
#define stlen(s) ll s.size()-1
#define all(v) begin(v), end(v)
#define range(v,a) begin(v),begin(v)+a
#define range2(v,a,b) begin(v)+a,begin(v)+b
#define range3(v,a) begin(v)+1,begin(v)+a+1
#define range4(v,a,b) begin(v)+a+1,begin(v)+b+1
#define allr(v) rbegin(v), v.rend(v)
#define ranger(v,a) rbegin(v),rbegin(v)+a
#define ranger2(v,a,b) rbegin(v)+a,rbegin(v)+b
#define ranger3(v,a) rbegin(v)+1,rbegin(v)+a+1
#define ranger4(v,a,b) rbegin(v)+a+1,rbegin(v)+b+1
#define cout(n) cout<<std::fixed<<std::setprecision(n)
//#define sum(...) accumulate(all(__VA_ARGS__),0LL)
#define dsum(...) accumulate(all(__VA_ARGS__),0.0L)
#define elif else if
#define unless(a) if(!(a))
#define mp make_pair
#define mt make_tuple
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define Sort(a) sort(all(a))
#define Rev(a) reverse(all(a))
#define Uniq(a) sort(all(a)); a.erase(unique(all(a)),end(a));
#define vec(type,name,...) vector<type> name(__VA_ARGS__)
#define VEC(type,name,size) vector<type> name(size); in(name)
#define vv(type,name,h,...) vector<vector<type>> name(h,vector<type>(__VA_ARGS__))
#define VV(type,name,h,w) vector<vector<type>> name(h,vector<type>(w)); in(name)
template<class T> inline const auto min(const T& a){ return *min_element(all(a));}
template<class T> inline const auto max(const T& a){ return *max_element(all(a));}
inline const ll popcnt(const ull a){return __builtin_popcountll(a);}
inline const ll gcd(ll a,ll b){while(b){ll c=b; b=a%b;a=c;}return a;}
inline const ll lcm(ll a,ll b){unless(a&&b) return 0;return a*b/gcd(a,b);}
inline const ll intpow(ll a,ll b){ll ans=1; while(b){if(b&1)ans*=a;a *=a; b/=2;}return ans;}
inline const ll modpow(ll a,ll b, ll p=mod){ll ans=1; while(b){if(b&1)(ans*=a)%=p;(a*=a)%=p;b/=2;}return ans;}
template<class T,class U>inline const bool chmin(T& a,const U& b){if(a>b){a=b;return 1;}return 0;}
template<class T,class U>inline const bool chmax( T& a,const U& b){if(a<b){a=b;return 1;}return 0;}
inline const vector<ll> iota(const ll n){vector<ll> a(n); iota(all(a),0);return a;}
inline const vector<pll> factor(ull x){vector<pll> ans; for(ull i=2;i*i<=x;i++)if(x%i==0){ans.push_back({i,1});while((x/=i)%i==0)ans.back().second++;}if(x!=1)ans.push_back({x,1});return ans;}
inline const map<ll,ll> factor_map(ull x){map<ll,ll> ans; for(ull i=2; i*i<=x;i++)if(x%i==0){ans[i]=1;while((x/=i)%i==0)ans[i]++;}if(x!=1)ans[x]=1;return ans;}
inline const vector<ll> divisor(ull x){vector<ll> ans; for(ull i=2;i*i<=x;i++)if(x%i==0)ans.push_back(i);rrep(ans.size()-(ans.back()*ans.back()==x))ans.push_back(x/ans[i]);return ans;}
inline const int scan() {return getchar();}
inline const void scan(int &a){scanf("%d", &a);}
inline const void scan(unsigned& a){scanf("%u",&a);}
inline const void scan(long& a){scanf("%ld",&a);}
inline const void scan(long long& a){scanf("%lld", &a);}
inline const void scan(char& a){ do{a=getchar();}while(a==' '||a=='\n');}
inline const void scan(float& a){ scanf("%f",&a);}
inline const void scan(double& a){ scanf("%lf",&a);}
inline const void scan(long double& a){ scanf("%Lf",&a);}
inline const void scan( string& a){cin>> a;}
template<class T>inline const void scan( vector<T>& a){for(auto&& i:a)scan(i);}
template<class T,size_t size>inline const void scan(array<T, size>& a){for(auto&& i:a)scan(i);}
template<class T,class L>inline const void scan( pair<T,L>&p){scan(p.first);scan(p.second);}
template<class T,size_t size>inline const void scan( T (&a)[size]){ for(auto&& i:a)scan(i);}
inline const void in(){}
template <class Head,class... Tail>inline const void in( Head& head, Tail&... tail){scan(head);in(tail...);}
inline const int ctoi(const char c){if(c>='a'&&c<='z'){return c-'a';} if(c>='A'&&c<='Z'){return c-'A';}if(c>='0'&&c<='9'){return c-'0';}return -1;}
inline const void print(){putchar(' ');}
inline const void print(const bool a){printf("%d", a);}
inline const void print(const int a){printf("%d",a);}
inline const void print(const unsigned a){ printf("%u",a);}
inline const void print(const long a){printf("%ld",a);}
inline const void print(const unsigned long long a){printf("%llu",a);}
inline const void print(const char a){ printf("%c",a);}
inline const void print(const double a){printf("%.15f",a);}
inline const void print(const long double a){printf("%.15Lf",a);}
inline const void print(const string&a){for(auto&&i :a)print(i);}
template<class T> inline const void print(const vector<T> &a){if(a.empty())return ;print(a[0]);for(auto i=a.begin();++i!=a.end();){putchar(' ');print(*i);}}
template<class T> inline const void print(const deque<T>&a ){if(a.empty())return;print(a[0]);for(auto i=a.begin(); ++i!=a.end();){putchar(' ');print(*i);}}
template<class T, size_t size>inline const void print(const T (&a)[size]){print(a[0]);for(auto i=a;++i!=end(a);){putchar(' ');print(*i);}}
template<class T>inline const void print(const T& a){cout<<a;}
inline const int out(){putchar('\n');return 0;}
template<class T> inline const int out(const T& t){print(t);putchar('\n');return 0;}
template<class Head,class... Tail>inline const int out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);return 0;}
inline const int first(const bool i){return out(i?"first":"second");}
inline const int yes(const bool i){return out(i?"yes":"no");}
inline const int Yes(const bool i){return out(i?"Yes":"No");}
inline const int YES(const bool i){return out(i?"YES":"NO");}
inline const int possible(const bool i){return out(i?"possible":"impossible");}
inline const int Possible(const bool i){return out(i?"Possible":"Impossible");}
inline const int POSSIBLE(const bool i){return out(i?"POSSIBLE":"IMPOSSIBLE");}

 
using Graph = vector<vector<int>>;
using Graphw = vector<vector<pair<ll,ll>>>;
using mat = vector<vector<ll>>;
using vec = vector<ll>;


/*
namespace mp = boost::multiprecision;
// 任意長整数型
using Bint = mp::cpp_int;
// 仮数部長が32の浮動小数点数型
using Real32 = mp::number<mp::cpp_dec_float<32>>;
// 仮数部長が1024の浮動小数点数型
using Real1024 = mp::number<mp::cpp_dec_float<1024>>;
// 有理数型
using Rat = boost::rational<Bint>;
*/


namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal


namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}
}
using mint = modint;

vector<vector<mint>> mul(vector<vector<mint>> &a,vector<vector<mint>> &b){
vector<vector<mint>> res(2,vector<mint>(2));
rep(i,2)rep(j,2)rep(k,2)res[i][j]+=a[i][k]*b[k][j];
return res;
}
vector<vector<mint>> matpow(vector<vector<mint>> &a,int K){
vector<vector<mint>> res(2,vector<mint>(2)),base(2,vector<mint>(2));
base=a;
rep(i,2)res[i][i]=1;
while(K>0){
    if(K&1)res=mul(res,base);
    base=mul(base,base);
    K/=2;
}
return res;

}


signed main(){
INT(N,M);
mint::set_mod(M);
vector<vector<mint>> mat(2,vector<mint>(2));
mat[0][0]=1,mat[0][1]=1,mat[1][0]=1;
mat=matpow(mat,N-2);
out(mat[0][0].val());

}
0