結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | Saikyo-Kazune |
提出日時 | 2020-09-10 23:13:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 23,904 bytes |
コンパイル時間 | 1,970 ms |
コンパイル使用メモリ | 220,364 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-06 13:46:29 |
合計ジャッジ時間 | 2,632 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
ソースコード
/* #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/cpp_int.hpp> #include <boost/rational.hpp> */ //#include <atcoder/all> #include <bits/stdc++.h> using namespace std; //using namespace atcoder; #define _GLIBCXX_DEBUG #define rep(i,t) for (ll i = (ll)(0); i < (ll)(t); i++) #define rep2(i,s,t) for (ll i = (ll)(s); i < (ll)(t); i++) #define rep3(i,t) for (ll i = (ll)(1); i <= (ll)(t); i++) #define rep4(i,s,t) for (ll i = (ll)(s); i <= (ll)(t); i++) #define repr(i,t) for (ll i = (t-1); i>=(0);i--) #define repr2(i,s,t) for (ll i = (t-1); i>=(s);i--) #define repr3(i,t) for (ll i = (t); i>=(1);i--) #define repr4(i,s,t) for (ll i = (t); i>=(s);i--) using ll = long long; using ld = long double; using ull = unsigned long long; using uint = unsigned; using pcc =pair<char,char>; using pll = pair<ll,ll>; using pii = pair<int,int>; using pdd = pair<double,double>; using tuplis = array<ll,3>; template<class T> using pq = priority_queue<T,vector<T>,greater<T>>; const ll LINF = 1e18; const ll MINF = 1e15; const int INF = 1e9+1e5; //const int mod=1000000007; const int mod=998244353; const ld DINF = numeric_limits<ld>::infinity(); const ld EPS=1e-9; const ld PI=acos(-1); //const ll dx[] ={0,1,0,-1,1,-1,1,-1}; //const ll dy[] ={1,0,-1,0,1,1,-1,-1}; inline const bool ingrid(const int i,const int j,const int H,const int W){return i>=0&&i<H&&j>=0&&j<W;} const ll dx[] ={0,1,0,-1}; const ll dy[] ={1,0,-1,0}; const bool is_low(char c){ return('a'<=c)&&(c<='z');} const bool is_upp (char c) {return('A'<=c)&&(c<='Z');} #define each1(i,a) for(auto&& i:a) #define each2(x,y,a) for(auto&& [x,y]:a) #define each3(x,y,z,a) for(auto&& [x,y,z]:a) #define rrep(n) for(ll i=(n);i--;) #define stlen(s) ll s.size()-1 #define all(v) begin(v), end(v) #define range(v,a) begin(v),begin(v)+a #define range2(v,a,b) begin(v)+a,begin(v)+b #define range3(v,a) begin(v)+1,begin(v)+a+1 #define range4(v,a,b) begin(v)+a+1,begin(v)+b+1 #define allr(v) rbegin(v), v.rend(v) #define ranger(v,a) rbegin(v),rbegin(v)+a #define ranger2(v,a,b) rbegin(v)+a,rbegin(v)+b #define ranger3(v,a) rbegin(v)+1,rbegin(v)+a+1 #define ranger4(v,a,b) rbegin(v)+a+1,rbegin(v)+b+1 #define cout(n) cout<<std::fixed<<std::setprecision(n) //#define sum(...) accumulate(all(__VA_ARGS__),0LL) #define dsum(...) accumulate(all(__VA_ARGS__),0.0L) #define elif else if #define unless(a) if(!(a)) #define mp make_pair #define mt make_tuple #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define ULL(...) ull __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define Sort(a) sort(all(a)) #define Rev(a) reverse(all(a)) #define Uniq(a) sort(all(a)); a.erase(unique(all(a)),end(a)); #define vec(type,name,...) vector<type> name(__VA_ARGS__) #define VEC(type,name,size) vector<type> name(size); in(name) #define vv(type,name,h,...) vector<vector<type>> name(h,vector<type>(__VA_ARGS__)) #define VV(type,name,h,w) vector<vector<type>> name(h,vector<type>(w)); in(name) template<class T> inline const auto min(const T& a){ return *min_element(all(a));} template<class T> inline const auto max(const T& a){ return *max_element(all(a));} inline const ll popcnt(const ull a){return __builtin_popcountll(a);} inline const ll gcd(ll a,ll b){while(b){ll c=b; b=a%b;a=c;}return a;} inline const ll lcm(ll a,ll b){unless(a&&b) return 0;return a*b/gcd(a,b);} inline const ll intpow(ll a,ll b){ll ans=1; while(b){if(b&1)ans*=a;a *=a; b/=2;}return ans;} inline const ll modpow(ll a,ll b, ll p=mod){ll ans=1; while(b){if(b&1)(ans*=a)%=p;(a*=a)%=p;b/=2;}return ans;} template<class T,class U>inline const bool chmin(T& a,const U& b){if(a>b){a=b;return 1;}return 0;} template<class T,class U>inline const bool chmax( T& a,const U& b){if(a<b){a=b;return 1;}return 0;} inline const vector<ll> iota(const ll n){vector<ll> a(n); iota(all(a),0);return a;} inline const vector<pll> factor(ull x){vector<pll> ans; for(ull i=2;i*i<=x;i++)if(x%i==0){ans.push_back({i,1});while((x/=i)%i==0)ans.back().second++;}if(x!=1)ans.push_back({x,1});return ans;} inline const map<ll,ll> factor_map(ull x){map<ll,ll> ans; for(ull i=2; i*i<=x;i++)if(x%i==0){ans[i]=1;while((x/=i)%i==0)ans[i]++;}if(x!=1)ans[x]=1;return ans;} inline const vector<ll> divisor(ull x){vector<ll> ans; for(ull i=2;i*i<=x;i++)if(x%i==0)ans.push_back(i);rrep(ans.size()-(ans.back()*ans.back()==x))ans.push_back(x/ans[i]);return ans;} inline const int scan() {return getchar();} inline const void scan(int &a){scanf("%d", &a);} inline const void scan(unsigned& a){scanf("%u",&a);} inline const void scan(long& a){scanf("%ld",&a);} inline const void scan(long long& a){scanf("%lld", &a);} inline const void scan(char& a){ do{a=getchar();}while(a==' '||a=='\n');} inline const void scan(float& a){ scanf("%f",&a);} inline const void scan(double& a){ scanf("%lf",&a);} inline const void scan(long double& a){ scanf("%Lf",&a);} inline const void scan( string& a){cin>> a;} template<class T>inline const void scan( vector<T>& a){for(auto&& i:a)scan(i);} template<class T,size_t size>inline const void scan(array<T, size>& a){for(auto&& i:a)scan(i);} template<class T,class L>inline const void scan( pair<T,L>&p){scan(p.first);scan(p.second);} template<class T,size_t size>inline const void scan( T (&a)[size]){ for(auto&& i:a)scan(i);} inline const void in(){} template <class Head,class... Tail>inline const void in( Head& head, Tail&... tail){scan(head);in(tail...);} inline const int ctoi(const char c){if(c>='a'&&c<='z'){return c-'a';} if(c>='A'&&c<='Z'){return c-'A';}if(c>='0'&&c<='9'){return c-'0';}return -1;} inline const void print(){putchar(' ');} inline const void print(const bool a){printf("%d", a);} inline const void print(const int a){printf("%d",a);} inline const void print(const unsigned a){ printf("%u",a);} inline const void print(const long a){printf("%ld",a);} inline const void print(const unsigned long long a){printf("%llu",a);} inline const void print(const char a){ printf("%c",a);} inline const void print(const double a){printf("%.15f",a);} inline const void print(const long double a){printf("%.15Lf",a);} inline const void print(const string&a){for(auto&&i :a)print(i);} template<class T> inline const void print(const vector<T> &a){if(a.empty())return ;print(a[0]);for(auto i=a.begin();++i!=a.end();){putchar(' ');print(*i);}} template<class T> inline const void print(const deque<T>&a ){if(a.empty())return;print(a[0]);for(auto i=a.begin(); ++i!=a.end();){putchar(' ');print(*i);}} template<class T, size_t size>inline const void print(const T (&a)[size]){print(a[0]);for(auto i=a;++i!=end(a);){putchar(' ');print(*i);}} template<class T>inline const void print(const T& a){cout<<a;} inline const int out(){putchar('\n');return 0;} template<class T> inline const int out(const T& t){print(t);putchar('\n');return 0;} template<class Head,class... Tail>inline const int out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);return 0;} inline const int first(const bool i){return out(i?"first":"second");} inline const int yes(const bool i){return out(i?"yes":"no");} inline const int Yes(const bool i){return out(i?"Yes":"No");} inline const int YES(const bool i){return out(i?"YES":"NO");} inline const int possible(const bool i){return out(i?"possible":"impossible");} inline const int Possible(const bool i){return out(i?"Possible":"Impossible");} inline const int POSSIBLE(const bool i){return out(i?"POSSIBLE":"IMPOSSIBLE");} using Graph = vector<vector<int>>; using Graphw = vector<vector<pair<ll,ll>>>; using mat = vector<vector<ll>>; using vec = vector<ll>; /* namespace mp = boost::multiprecision; // 任意長整数型 using Bint = mp::cpp_int; // 仮数部長が32の浮動小数点数型 using Real32 = mp::number<mp::cpp_dec_float<32>>; // 仮数部長が1024の浮動小数点数型 using Real1024 = mp::number<mp::cpp_dec_float<1024>>; // 有理数型 using Rat = boost::rational<Bint>; */ namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } using mint = modint; vector<vector<mint>> mul(vector<vector<mint>> &a,vector<vector<mint>> &b){ vector<vector<mint>> res(2,vector<mint>(2)); rep(i,2)rep(j,2)rep(k,2)res[i][j]+=a[i][k]*b[k][j]; return res; } vector<vector<mint>> matpow(vector<vector<mint>> &a,int K){ vector<vector<mint>> res(2,vector<mint>(2)),base(2,vector<mint>(2)); base=a; rep(i,2)res[i][i]=1; while(K>0){ if(K&1)res=mul(res,base); base=mul(base,base); K/=2; } return res; } signed main(){ INT(N,M); mint::set_mod(M); vector<vector<mint>> mat(2,vector<mint>(2)); mat[0][0]=1,mat[0][1]=1,mat[1][0]=1; mat=matpow(mat,N-2); out(mat[0][0].val()); }