結果

問題 No.1224 I hate Sqrt Inequality
ユーザー PCTprobabilityPCTprobability
提出日時 2020-09-11 21:23:54
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 5 ms / 2,000 ms
コード長 15,009 bytes
コンパイル時間 8,266 ms
コンパイル使用メモリ 387,076 KB
最終ジャッジ日時 2025-01-14 09:51:25
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 13
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

////////////////////////////////////////////////////////////////////////////////
// Give me AC!!! //
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <random>
#include <cmath>
#include <limits>
#include <iostream>
#include <bits/stdc++.h>
#include <boost/multiprecision/cpp_int.hpp>
using namespace std;
namespace mp = boost::multiprecision;
using namespace mp;
using ull = __int128;
using ll = long long;
using cll = cpp_int;
using Graph = vector<vector<int>>;
#define REP(i,n) for(ll i=0;i<(ll)(n);i++)
#define REPD(i,n) for(ll i=n-1;i>=0;i--)
#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++)
#define FORD(i,a,b) for(ll i=a;i>=(ll)(b);i--)
//xvector
#define ALL(x) (x).begin(),(x).end() //sort
#define SIZE(x) ((ll)(x).size()) //sizesize_tll
#define MAX(x) *max_element(ALL(x)) //
#define MIN(x) *min_element(ALL(x)) //
#define PQ priority_queue<vector<ll>,vector<vector<ll>>,greater<vector<ll>>>
#define INF 1000000000000 //10^12:,∞
#define PB push_back //vector
#define MP make_pair //pair
#define F first //pair
#define S second //pair
#define coutY cout<<"YES"<<endl
#define couty cout<<"Yes"<<endl
#define coutN cout<<"NO"<<endl
#define coutn cout<<"No"<<endl
#define coutdouble(a,b) cout << fixed << setprecision(a) << double(b) ;
#define vi(a,b) vector<int> a(b)
#define vl(a,b) vector<ll> a(b)
#define vs(a,b) vector<string> a(b)
#define vll(a,b,c) vector<vector<ll>> a(b, vector<ll>(c));
#define intque(a) queue<int> a;
#define llque(a) queue<ll> a;
#define intque2(a) priority_queue<int, vector<int>, greater<int>> a;
#define llque2(a) priority_queue<ll, vector<ll>, greater<ll>> a;
#define pushback(a,b) a.push_back(b)
#define mapii(M1) map<int, int> M1;
#define cou(v,x) count(v.begin(), v.end(), x)
#define mapll(M1) map<ll,ll> M1;
#define mapls(M1) map<ll, string> M1;
#define mapsl(M1) map<string, ll> M1;
#define twolook(a,l,r,x) lower_bound(a+l, a+r, x) - a
#define sor(a) sort(a.begin(), a.end())
#define rever(a) reverse(a.begin(),a.end())
#define rep(i,a) for(ll i=0;i<a;i++)
#define vcin(n) for(ll i=0;i<ll(n.size());i++) cin>>n[i]
#define vcout(n) for(ll i=0;i<ll(n.size());i++) cout<<n[i]
#define vcin2(n) rep(i,ll(n.size())) rep(j,ll(n.at(0).size())) cin>>n[i][j]
//const ll mod = 998244353;
//const ll MOD = 998244353;
const ll MOD = 9989123;
const ll mod = 9989123;
constexpr ll MAX = 5000000;
//const ll _max = 9223372036854775807;
const ll _max = 1223372036854775807;
ll fac[MAX],finv[MAX],inv[MAX];
//
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
//
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
int modPow(long long a, long long n, long long p) {
if (n == 0) return 1; // 0
if (n == 1) return a % p;
if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p;
long long t = modPow(a, n / 2, p);
return (t * t) % p;
}
ll clocks(ll a,ll b,ll c){
return a*3600+b*60+c;
}
ll divup(ll b,ll d){
if(b%d==0){
return b/d;
}
else{
return b/d+1;
}
}
struct UnionFind {
vector<int> par; // par[i]:i () par[3] = 2 : 32
UnionFind(int N) : par(N) { //
for(int i = 0; i < N; i++) par[i] = i;
}
int root(int x) { // xroot(x) = {x}
if (par[x] == x) return x;
return par[x] = root(par[x]);
}
void unite(int x, int y) { // xy
int rx = root(x); //xrx
int ry = root(y); //yry
if (rx == ry) return; //xy(=)
par[rx] = ry; //xy(=)xrxyry
}
bool same(int x, int y) { // 2x, ytrue
int rx = root(x);
int ry = root(y);
return rx == ry;
}
};
struct Edge {
int to; //
int weight; //
Edge(int t, int w) : to(t), weight(w) { }
};
using Graphw = vector<vector<Edge>>;
ll zero(ll a){
return max(ll(0),a);
}
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< P(P, P) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_fft(MULT f) {
get_mult() = f;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret({T(1)});
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P C(*this * rev);
P D(n - i);
for(int j = i; j < n; j++) D[j - i] = C[j];
D = (D.log() * k).exp() * (*this)[i].pow(k);
P E(deg);
if(i * k > deg) return E;
auto S = i * k;
for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];
return E;
}
}
return *this;
}
T eval(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
};
//ab,(a,10)a
ll expless(ll a,ll b){
ll k=0;
ll o=1;
while(a>=o){
k++;
o=o*b;
}
return k;
}
//ab
//ba10
ll tenbase(ll a,ll b){
ll c=expless(a,10);
ll ans=0;
ll k=1;
for(int i=0;i<c;i++){
ans+=(a%10)*k;
k=k*b;
a=a/10;
}
return ans;
}
vector<pair<long long, long long> > prime_factorize(long long N) {
vector<pair<long long, long long> > res;
for (long long a = 2; a * a <= N; ++a) {
if (N % a != 0) continue;
long long ex = 0; //
//
while (N % a == 0) {
++ex;
N /= a;
}
// push
res.push_back({a, ex});
}
//
if (N != 1) res.push_back({N, 1});
return res;
}
ll atll(ll a,ll b){
b++;
ll c=expless(a,10);
ll d=c-b;
ll f=1;
for(int i=0;i<d;i++){
f=f*10;
}
a=(a/f);
return a%10;
}
//ab
ll exp(ll a,ll b){
ll ans=0;
while(a%b==0){
a=a/b;
ans++;
}
return ans;
}
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
const int X[6]={1,1,0,-1,-1,0};
const int Y[6]={0,1,1,0,-1,-1};
template<typename T>
vector<T> smallest_prime_factors(T n) {
vector<T> spf(n + 1);
for (int i = 0; i <= n; i++) spf[i] = i;
for (T i = 2; i * i <= n; i++) {
//
if (spf[i] == i) {
for (T j = i * i; j <= n; j += i) {
// i
if (spf[j] == j) {
spf[j] = i;
}
}
}
}
return spf;
}
vector<pair<ll,ll>> factolization(ll x, vector<ll> &spf) {
vector<pair<ll,ll>> ret;
ll p;
ll z;
while (x != 1) {
p=(spf[x]);
z=0;
while(x%p==0){
z++;
x /= p;
}
ret.push_back({p, z});
}
return ret;
}
vector<bool> is;
vector<long long int> prime_(ll n){
is.resize(n+1, true);
is[0] = false;
is[1] = false;
vector<long long int> primes;
for (int i=2; i<=n; i++) {
if (is[i] == true){
primes.push_back(i);
for (int j=i*2; j<=n; j+=i){
is[j] = false;
}
}
}
return primes;
}
vector<ll> dijkstra(ll f,ll n,vector<vector<vector<ll>>>& edge){
//
vector<ll> confirm(n,false);
//
//0,INF
vector<ll> mincost(n,INF);mincost[f]=0;
//Priority queue
PQ mincand;mincand.push({mincost[f],f});
//mincand
while(!mincand.empty()){
//
vector<ll> next=mincand.top();mincand.pop();
//
if(confirm[next[1]]) continue;
//
confirm[next[1]]=true;
//()l
vector<vector<ll>>& v=edge[next[1]];ll l=SIZE(v);
REP(i,l){
//((✳︎2)(✳︎1))
if(confirm[v[i][0]]) continue; //(✳︎1)
//mincost()
if(mincost[v[i][0]]<=next[0]+v[i][1]) continue; //(✳︎2)
//
mincost[v[i][0]]=next[0]+v[i][1];
//()mincand
mincand.push({mincost[v[i][0]],v[i][0]});
}
}
return mincost;
}
ll so(ll a){
ll ans=0;
if(a==0){
return 0;
}
while(a%2==0){
a/=2;
ans++;
}
return ans;
}
ll HOM(ll n,ll r){
return COM(n+r-1,r);
}
ll binary(ll bina){
ll ans = 0;
for (ll i = 0; bina>0 ; i++)
{
ans = ans+(bina%2)*pow(10,i);
bina = bina/2;
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(10);
ll a,b;
cin>>a>>b;
b/=gcd(a,b);
while(b%2==0){
b/=2;
}
while(b%5==0){
b/=5;
}
if(b!=1){
cout<<"Yes"<<endl;
}
else{
cout<<"No"<<endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0