結果

問題 No.1224 I hate Sqrt Inequality
ユーザー Shuz*Shuz*
提出日時 2020-09-11 21:41:46
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 9,365 bytes
コンパイル時間 1,593 ms
コンパイル使用メモリ 173,336 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-11 21:18:42
合計ジャッジ時間 2,225 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
// #pragma GCC target("arch=skylake-avx512")
// export CPLUS_INCLUDE_PATH="/Users/shuzaei/Desktop/ac-library"
// /usr/bin/env python3 "/Users/shuzaei/Desktop/ac-library/expander.py"
// /Users/shuzaei/Desktop/Solve.cpp
// #include <atcoder/all>
// using namespace atcoder;
#pragma region template
// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T> using pvector = vector<pair<T, T>>;
template <class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
constexpr const ll dx[4] = {1, 0, -1, 0};
constexpr const ll dy[4] = {0, 1, 0, -1};
constexpr const ll MOD = 1e9 + 7;
constexpr const ll mod = 998244353;
constexpr const ll INF = 1LL << 60;
constexpr const ll inf = 1 << 30;
constexpr const char rt = '\n';
constexpr const char sp = ' ';
#define rt(i, n) (i == (ll)(n) -1 ? rt : sp)
#define len(x) ((ll)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define eb emplace_back
#define ifn(x) if (not(x))
#define elif else if
#define elifn else ifn
#define fi first
#define se second
#define uniq(x) (sort(all(x)), (x).erase(unique(all(x)), (x).end()))
#define bis(x, y) ((ll)(lower_bound(all(x), y) - (x).begin()))
using graph = vector<vector<ll>>;
template <class T> using wgraph = vector<vector<pair<ll, T>>>;
bool __DIRECTED__ = true;
bool __ZERO_INDEXED__ = false;
istream &operator>>(istream &is, graph &g) {
ll a, b;
is >> a >> b;
if (__ZERO_INDEXED__ == false) a--, b--;
g[a].pb(b);
if (__DIRECTED__ == false) g[b].pb(a);
return is;
}
template <class T> istream &operator>>(istream &is, wgraph<T> &g) {
ll a, b;
T c;
is >> a >> b >> c;
if (__ZERO_INDEXED__ == false) a--, b--;
g[a].pb({b, c});
if (__DIRECTED__ == false) g[b].pb({a, c});
return is;
}
template <class T> bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T> bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
// Debug
#define debug(...) \
{ \
cerr << __LINE__ << ": " << #__VA_ARGS__ << " = "; \
for (auto &&__i : {__VA_ARGS__}) cerr << "[" << __i << "] "; \
cerr << rt; \
}
#define dumpi(a, h, w) \
{ \
cerr << __LINE__ << ": " << #a << " = [" << rt; \
rep(__i, h) { \
if (__i) cerr << ",\n"; \
cerr << "["; \
rep(__j, w) { \
if (__j) cerr << ", "; \
if (abs(a[__i][__j]) >= INF / 2 and a[__i][__j] <= -INF / 2) cerr << '-'; \
if (abs(a[__i][__j]) >= INF / 2) cerr << "∞"; \
else \
cerr << a[__i][__j]; \
} \
cerr << "]" << rt; \
} \
cerr << "\n]" << rt; \
}
#define vdumpi(a, n) \
{ \
cerr << __LINE__ << ": " << #a << " = ["; \
rep(__i, n) { \
if (__i) cerr << ", "; \
if (abs(a[__i]) >= INF / 2 and a[__i] <= -INF / 2) cerr << '-'; \
if (abs(a[__i]) >= INF / 2) cerr << "∞"; \
else \
cerr << a[__i]; \
} \
cerr << "]" << rt; \
}
#define dump(a, h, w) \
{ \
cerr << __LINE__ << ": " << #a << " = [" << rt; \
rep(__i, h) { \
if (__i) cerr << ",\n"; \
cerr << "["; \
rep(__j, w) { \
if (__j) cerr << ", "; \
cerr << a[__i][__j]; \
} \
cerr << "]"; \
} \
cerr << "\n]" << rt; \
}
#define vdump(a, n) \
{ \
cerr << __LINE__ << ": " << #a << " = ["; \
rep(__i, n) { \
if (__i) cerr << ", "; \
cerr << a[__i]; \
} \
cerr << "]" << rt; \
}
template <class S, class T> istream &operator>>(istream &is, pair<S, T> &p) {
is >> p.first >> p.second;
return is;
}
template <class S, class T> ostream &operator<<(ostream &os, const pair<S, T> &p) {
os << p.first << ' ' << p.second;
return os;
}
// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)
// Stream
#define fout(n) cout << fixed << setprecision(n)
struct io {
io() { cin.tie(nullptr), ios::sync_with_stdio(false); }
} io;
// Speed
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
#pragma GCC optimize("Ofast,unroll-loops")
// Math
inline constexpr ll gcd(const ll a, const ll b) { return b ? gcd(b, a % b) : a; }
inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }
inline constexpr ll modulo(const ll n, const ll m = MOD) {
ll k = n % m;
return k + m * (k < 0);
}
inline constexpr ll chmod(ll &n, const ll m = MOD) {
n %= m;
return n += m * (n < 0);
}
inline constexpr ll mpow(ll a, ll n, const ll m = MOD) {
ll r = 1;
rep(i, 64) {
if (n & (1LL << i)) r *= a;
chmod(r, m);
a *= a;
chmod(a, m);
}
return r;
}
inline ll inv(const ll n, const ll m = MOD) {
ll a = n, b = m, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return modulo(x, m);
}
#pragma endregion
signed main() {
ll A, B;
cin >> A >> B;
B /= gcd(A, B);
while (B % 5 == 0) B /= 5;
while (B % 2 == 0) B /= 2;
cout << (B == 1 ? "No" : "Yes") << rt;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0