結果
| 問題 |
No.1228 I hate XOR Matching
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-09-11 21:45:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 13,262 bytes |
| コンパイル時間 | 3,480 ms |
| コンパイル使用メモリ | 255,456 KB |
| 最終ジャッジ日時 | 2025-01-14 10:18:08 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 WA * 1 |
| other | AC * 21 WA * 10 |
ソースコード
#line 1 "yukicoder\\a.cpp"
#include <bits/extc++.h>
#line 5 "Library\\config.hpp"
namespace config {
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed() {
using namespace std::chrono;
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup() {
using namespace std;
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
#ifdef _buffer_check
atexit([] {
char bufc;
if (cin >> bufc)
cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
unsigned cases(void), caseid = 1;
template <class C> void main() {
for (const unsigned total = cases(); caseid <= total; ++caseid) C();
}
} // namespace config
#line 3 "Library\\gcc_builtin.hpp"
namespace workspace {
constexpr int clz32(const uint32_t &n) noexcept { return __builtin_clz(n); }
constexpr int clz64(const uint64_t &n) noexcept{ return __builtin_clzll(n); }
constexpr int ctz(const uint64_t &n) noexcept { return __builtin_ctzll(n); }
constexpr int popcnt(const uint64_t &n) noexcept { return __builtin_popcountll(n); }
} // namespace workspace
#line 2 "Library\\gcc_option.hpp"
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 5 "Library\\utils\\binary_search.hpp"
namespace workspace {
// binary search on discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,
iter_type>
binary_search(iter_type ok, iter_type ng, pred_type pred) {
assert(ok != ng);
__int128_t dist(ng - ok);
while (dist > 1 || dist < -1) {
iter_type mid(ok + dist / 2);
if (pred(mid))
ok = mid, dist -= dist / 2;
else
ng = mid, dist /= 2;
}
return ok;
}
// parallel binary search on discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<iter_type>>,
std::vector<bool>>,
std::vector<iter_type>>
binary_search(std::vector<std::pair<iter_type, iter_type>> ends,
pred_type pred) {
std::vector<iter_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
iter_type mid(ok + (ng - ok) / 2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
// binary search on real numbers.
template <class real_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,
real_type>
binary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {
assert(ok != ng);
while (ok + eps < ng || ng + eps < ok) {
real_type mid{(ok + ng) / 2};
(pred(mid) ? ok : ng) = mid;
}
return ok;
}
// parallel binary search on real numbers.
template <class real_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<real_type>>,
std::vector<bool>>,
std::vector<real_type>>
binary_search(std::vector<std::pair<real_type, real_type>> ends,
const real_type eps, pred_type pred) {
std::vector<real_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
if (ok + eps < ng || ng + eps < ok) {
all_found = false;
mids[i] = (ok + ng) / 2;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
} // namespace workspace
#line 3 "Library\\utils\\casefmt.hpp"
namespace workspace {
std::ostream &casefmt(std::ostream& os) { return os << "Case #" << config::caseid << ": "; }
} // namespace workspace
#line 3 "Library\\utils\\chval.hpp"
namespace workspace {
template <class T, class Comp = std::less<T>> bool chle(T &x, const T &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; }
template <class T, class Comp = std::less<T>> bool chge(T &x, const T &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; }
} // namespace workspace
#line 3 "Library\\utils\\fixed_point.hpp"
namespace workspace {
// specify the return type of lambda.
template <class lambda_type>
class fixed_point
{
lambda_type func;
public:
fixed_point(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
} // namespace workspace
#line 3 "Library\\utils\\sfinae.hpp"
#include <type_traits>
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container&>()))>::type;
template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
T, typename std::enable_if<std::is_integral<T>::value>::type>
: std::true_type {};
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;
template <typename T, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {
using type = uint_least64_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
using type = __uint128_t;
};
#line 7 "Library\\utils\\hash.hpp"
namespace workspace {
template <class T, class = void>
struct hash : std::hash<T> {};
template <class Unique_bits_type>
struct hash<Unique_bits_type, enable_if_trait_type<Unique_bits_type, std::has_unique_object_representations>>
{
size_t operator()(uint64_t x) const
{
static const uint64_t m = std::random_device{}();
x ^= x >> 23;
// x *= 0x2127599bf4325c37ULL;
x ^= m;
x ^= x >> 47;
return x - (x >> 32);
}
};
template <class Key>
size_t hash_combine(const size_t &seed, const Key &key)
{
return seed ^ (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */ );
}
template <class T1, class T2>
struct hash<std::pair<T1, T2>>
{
size_t operator()(const std::pair<T1, T2> &pair) const
{
return hash_combine(hash<T1>()(pair.first), pair.second);
}
};
template <class... T>
class hash<std::tuple<T...>>
{
template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1> struct tuple_hash { static uint64_t apply(const Tuple &t) { return hash_combine(tuple_hash<Tuple, index - 1>::apply(t), std::get<index>(t)); } };
template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> { static uint64_t apply(const Tuple &t) { return 0; } };
public:
uint64_t operator()(const std::tuple<T...> &t) const { return tuple_hash<std::tuple<T...>>::apply(t); }
};
template <class hash_table>
struct hash_table_wrapper : hash_table
{
using key_type = typename hash_table::key_type;
size_t count(const key_type &key) const { return hash_table::find(key) != hash_table::end(); }
template <class... Args> auto emplace(Args&&... args) { return hash_table::insert(typename hash_table::value_type(args...)); }
};
template <class Key, class Mapped = __gnu_pbds::null_type>
using cc_hash_table = hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped = __gnu_pbds::null_type>
using gp_hash_table = hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped>
using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;
template <class Key>
using unordered_set = std::unordered_set<Key, hash<Key>>;
} // namespace workspace
#line 3 "Library\\utils\\make_vector.hpp"
namespace workspace {
template <typename T, size_t N>
constexpr auto make_vector(size_t* sizes, T const& init = T()) {
if constexpr (N)
return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));
else
return init;
}
template <typename T, size_t N>
constexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {
return make_vector<T, N>((size_t*)sizes, init);
}
} // namespace workspace
#line 3 "Library\\utils\\read.hpp"
namespace workspace {
// read with std::cin.
template <class T = void>
struct read
{
typename std::remove_const<T>::type value;
template <class... types>
read(types... args) : value(args...) { std::cin >> value; }
operator T() const { return value; }
};
template <>
struct read<void>
{
template <class T>
operator T() const { T value; std::cin >> value; return value; }
};
} // namespace workspace
#line 4 "Library\\utils\\stream.hpp"
#line 6 "Library\\utils\\stream.hpp"
namespace std {
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
return os << p.first << ' ' << p.second;
}
template <class tuple_t, size_t index> struct tuple_is {
static istream &apply(istream &is, tuple_t &t) {
tuple_is<tuple_t, index - 1>::apply(is, t);
return is >> get<index>(t);
}
};
template <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {
static istream &apply(istream &is, tuple_t &t) { return is; }
};
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) {
return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,
t);
}
template <class tuple_t, size_t index> struct tuple_os {
static ostream &apply(ostream &os, const tuple_t &t) {
tuple_os<tuple_t, index - 1>::apply(os, t);
return os << ' ' << get<index>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, 0> {
static ostream &apply(ostream &os, const tuple_t &t) {
return os << get<0>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {
static ostream &apply(ostream &os, const tuple_t &t) { return os; }
};
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {
return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,
t);
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
istream &>::type
operator>>(istream &is, Container &cont) {
for (auto &&e : cont) is >> e;
return is;
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
ostream &>::type
operator<<(ostream &os, const Container &cont) {
bool head = true;
for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;
return os;
}
} // namespace std
#line 14 "yukicoder\\a.cpp"
namespace workspace {
constexpr char eol = '\n';
using namespace std;
using i64 = int_least64_t;
using p32 = pair<int, int>;
using p64 = pair<i64, i64>;
template <class T, class Comp = std::less<T>>
using priority_queue = std::priority_queue<T, std::vector<T>, Comp>;
template <class T> using stack = std::stack<T, std::vector<T>>;
struct solver;
} // namespace workspace
int main() { config::main<workspace::solver>(); }
unsigned config::cases() {
// return -1; // not specify
// int t; std::cin >> t; return t; // given
return 1;
}
struct workspace::solver {
solver() {
// start here!
int k, x;
cin >> k >> x;
if (!x) {
cout << "Yes\n";
cout << "1\n";
cout << int(k ^ 1) << "\n";
return;
}
if (!k) x++;
int tz = ctz(x);
if (x != (1 << tz)) {
cout << "No\n";
return;
}
cout << "Yes\n";
if (x == 1) {
cout << "1\n";
cout << k;
cout << "\n";
return;
}
vector<int> ans{k};
int rest = popcnt(k);
for (int i = 1, j = 0; j < 4; i <<= 1) {
if (k & i) {
if (rest > 1) {
rest--;
ans.push_back(i);
j++;
}
} else {
ans.push_back(i);
j++;
}
}
for (int s = 0; s < 1 << 5 and tz--; s++) {
int now = 0;
for (int i = 0; i < 5; i++) {
if (s >> i & 1) now ^= ans[i];
}
ans.push_back(now);
}
cout << ans.size() << "\n";
cout << ans << endl;
}
};
jell