結果

問題 No.1223 I hate Golf
ユーザー ThistleThistle
提出日時 2020-09-11 21:53:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 12,198 bytes
コンパイル時間 1,967 ms
コンパイル使用メモリ 126,620 KB
実行使用メモリ 34,772 KB
最終ジャッジ日時 2024-06-08 09:39:23
合計ジャッジ時間 2,587 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 17 ms
34,688 KB
testcase_01 AC 16 ms
34,688 KB
testcase_02 AC 17 ms
34,688 KB
testcase_03 WA -
testcase_04 AC 16 ms
34,644 KB
testcase_05 WA -
testcase_06 AC 17 ms
34,688 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 17 ms
34,688 KB
testcase_10 AC 16 ms
34,644 KB
testcase_11 AC 15 ms
34,688 KB
testcase_12 AC 16 ms
34,772 KB
testcase_13 AC 17 ms
34,560 KB
testcase_14 AC 16 ms
34,688 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
    int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
    return sum;
}
template<typename T>
class csum {
    vec<T> v;
public:
    csum(vec<T>& a) :v(a) { build(); }
    csum() {}
    void init(vec<T>& a) { v = a; build(); }
    void build() {
        for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
    }
    //[l,r]
    T a(int l, int r) {
        if (r < l) return 0;
        return v[r] - (l == 0 ? 0 : v[l - 1]);
    }
    //[l,r)
    T b(int l, int r) {
        return a(l, r - 1);
    }
    T a(pair<int, int>t) {
        return a(t.first, t.second);
    }
    T b(pair<int, int>t) {
        return b(t.first, t.second);
    }
};
class mint {
public:ll v;
      mint(ll v = 0) { s(v % mod + mod); }
      constexpr static int mod = (ll)1e9 + 7;
      constexpr static int fn_ = (ll)2e6 + 5;
      static mint fact[fn_], comp[fn_];
      mint pow(int x) const {
          mint b(v), c(1);
          while (x) {
              if (x & 1) c *= b;
              b *= b;
              x >>= 1;
          }
          return c;
      }
      inline mint& s(int vv) {
          v = vv < mod ? vv : vv - mod;
          return *this;
      }
      inline mint inv()const { return pow(mod - 2); }
      inline mint operator-()const { return mint() - *this; }
      inline mint& operator+=(const mint b) { return s(v + b.v); }
      inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
      inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
      inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
      inline mint operator+(const mint b) const { return mint(v) += b; }
      inline mint operator-(const mint b) const { return mint(v) -= b; }
      inline mint operator*(const mint b) const { return mint(v) *= b; }
      inline mint operator/(const mint b) const { return mint(v) /= b; }
      friend ostream& operator<<(ostream& os, const mint& m) {
          return os << m.v;
      }
      friend istream& operator>>(istream& is, mint& m) {
          int x; is >> x; m = mint(x);
          return is;
      }
      bool operator<(const mint& r)const { return v < r.v; }
      bool operator>(const mint& r)const { return v > r.v; }
      bool operator<=(const mint& r)const { return v <= r.v; }
      bool operator>=(const mint& r)const { return v >= r.v; }
      bool operator==(const mint& r)const { return v == r.v; }
      bool operator!=(const mint& r)const { return v != r.v; }
      explicit operator bool()const { return v; }
      explicit operator int()const { return v; }
      mint comb(mint k) {
          if (k > * this) return mint();
          if (!fact[0]) combinit();
          if (v >= fn_) {
              if (k > * this - k) k = *this - k;
              mint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
              return tmp * comp[k.v];
          }
          return fact[v] * comp[k.v] * comp[v - k.v];
      }//nCk
      mint perm(mint k) {
          if (k > * this) return mint();
          if (!fact[0]) combinit();
          if (v >= fn_) {
              mint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
              return tmp;
          }
          return fact[v] * comp[v - k.v];
      }//nPk
      static void combinit() {
          fact[0] = 1;
          for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
          comp[fn_ - 1] = fact[fn_ - 1].inv();
          for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
      }
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
template<typename T>
class BIT {
    int size;
    vector<T>dat;
public:
    BIT() {}
    BIT(vector<T>v) {
        init(v.size());
        for (int i = 1; i <= size; i++) {
            dat[i] += v[i - 1];
            if (i + (i & -i) <= size) dat[i + (i & -i)] += dat[i];
        }
    }
    BIT(int n) { init(n); }
    void init(int n) {
        size = n;
        dat.assign(size + 1, 0);
    }
    void add(int i, ll x) {
        i++;
        while (i <= size) {
            dat[i] += x;
            i += i & -i;
        }
    }
    void change(int i, ll x) {
        i++; int t = x - dat[i];
        while (i <= size) {
            int k = dat[i];
            dat[i] += t;
            t = dat[i] - k;
            i += i & -i;
        }
    }
    //[l,r)
    void add(int l, int r, ll x) {
        add(l, x); add(r, -x);
    }
    //[0,i]
    T query(int i) {
        i++;
        T sum = 0;
        while (i > 0) {
            sum += dat[i];
            i -= i & -i;
        }
        return sum;
    }
    //[l,r)
    T query(int l, int r) {
        return query(r - 1) - query(l - 1);
    }
    //[0,x) >= w
    int lower_bound(T w) {
        if (w <= 0) return 0;
        int x = 0, k = 1;
        while (k * 2 < size) k *= 2;
        for (; k > 0; k /= 2) {
            if (x + k <= size && dat[x + k] < w) {
                w -= dat[x + k];
                x += k;
            }
        }
        return x;
    }
};//size, 0-indexed

template<typename T>
class rangeBIT {
    int n, m;
    vector<vector<T>>dat;
public:
    rangeBIT() {}
    rangeBIT(int h, int w) { init(h, w); }
    void init(int h, int w) {
        n = h; m = w;
        dat.assign(n + 1, vector<T>(m + 1, 0));
    }
    void add(int x, int y, int w) {
        x++; y++;
        for (int i = x; i <= n; i += i & -i) {
            for (int j = y; j <= m; j += j & -j) {
                dat[i][j] += w;
            }
        }
    }
    //[0,x]*[0,y]
    T sum(int x, int y) {
        T ret = 0;
        x++; y++;
        for (int i = x; i > 0; i -= i & -i) {
            for (int j = y; j > 0; j -= j & -j) {
                ret += dat[i][j];
            }
        }
        return ret;
    }
    //[a,x]*[b,y]
    T sum(int a, int b, int x, int y) {
        return sum(x, y) - sum(x, b - 1) - sum(a - 1, y) + sum(a - 1, b - 1);
    }
};
//---------------------------------------------------------------------

template<typename T>
class SegtreeBeats {
    int n, rr;
    vector<T>mx_v, mn_v, smx_v, smn_v, sigm;
    vector<int>mx_c, mn_c;
    T mn = numeric_limits<T>::min(), mx = numeric_limits<T>::max();

public:
    SegtreeBeats(vector<T>v) { build(v); }
    void build(vector<T>v) {
        n = v.size(), rr = 1;
        while (rr < n) rr *= 2;

        mx_v.assign(2 * rr - 1, mn); mn_v.assign(2 * rr - 1, mx);
        smx_v.assign(2 * rr - 1, mn); smn_v.assign(2 * rr - 1, mx);
        mx_c.assign(2 * rr - 1, 0); mn_c.assign(2 * rr - 1, 0);
        sigm.assign(2 * rr - 1, 0);

        for (int i = rr - 1; i < 2 * rr - 1; i++) {
            if (i < rr - 1 + n) {
                mx_v[i] = mn_v[i] = sigm[i] = v[i];
                mn_c[i] = mx_c[i] = 1;
            }
        }
        for (int i = rr - 1; i >= 0; i--) proc(i);
    }

private:
    void eval(int i) {
        if (mx_v[i] < mx_v[2 * i + 1]) update_node_max(2 * i + 1, mx_v[i]);
        if (mn_v[i] > mn_v[2 * i + 1]) update_node_min(2 * i + 1, mn_v[i]);

        if (mx_v[i] < mx_v[2 * i + 2]) update_node_max(2 * i + 2, mx_v[i]);
        if (mn_v[i] > mn_v[2 * i + 2]) update_node_min(2 * i + 2, mn_v[i]);
    }
    void proc(int i) {
        if (mx_v[i * 2 + 1] < mx_v[i * 2 + 2]) {
            mx_v[i] = mx_v[i * 2 + 2];
            mx_c[i] = mx_c[i * 2 + 2];
            smx_v[i] = max(smx_v[i * 2 + 2], mx_v[2 * i + 1]);
        }
        else if (mx_v[i * 2 + 1] > mx_v[i * 2 + 2]) {
            mx_v[i] = mx_v[i * 2 + 1];
            mx_c[i] = mx_c[i * 2 + 1];
            smx_v[i] = max(smx_v[i * 2 + 1], mx_v[2 * i + 2]);
        }
        else {
            mx_v[i] = mx_v[i * 2 + 1];
            mx_c[i] = mx_c[i * 2 + 1] + mx_c[i * 2 + 2];
            smx_v[i] = max(smx_v[i * 2 + 1], smx_v[i * 2 + 2]);
        }


        if (mn_v[i * 2 + 1] < mn_v[i * 2 + 2]) {
            mn_v[i] = mn_v[i * 2 + 2];
            mn_c[i] = mn_c[i * 2 + 2];
            smn_v[i] = max(smn_v[i * 2 + 2], mn_v[2 * i + 1]);
        }
        else if (mn_v[i * 2 + 1] > mn_v[i * 2 + 2]) {
            mn_v[i] = mn_v[i * 2 + 1];
            mn_c[i] = mn_c[i * 2 + 1];
            smn_v[i] = max(smn_v[i * 2 + 1], mn_v[2 * i + 2]);
        }
        else {
            mn_v[i] = mn_v[i * 2 + 1];
            mn_c[i] = mn_c[i * 2 + 1] + mn_c[i * 2 + 2];
            smx_v[i] = max(smx_v[i * 2 + 1], smx_v[i * 2 + 2]);
        }
    }
    //change maximam by chmin
    void update_node_max(int i, T x) {
        sigm[i] += (x - mx_v[i]) * mx_c[i];

        if (mx_v[i] == mn_v[i]) mx_v[i] = mn_v[i] = x;
        else if (mx_v[i] == smn_v[i]) mx_v = smn_v[i] = x;
        else mx_v[i] = x;
    }
    void update_node_min(int i, T x) {
        sigm[i] += (x - mn_v[i]) * mn_c[i];

        if (mn_v[i] == mx_v[i]) mn_v[i] = mx_v[i] = x;
        else if (mn_v[i] == smx_v[i]) mn_v = smx_v[i] = x;
        else mn_v[i] = x;
    }

    void chmin(int i, int a, int b, int l, int r, T x) {
        if (b <= l || r <= a || mx_v[i] <= x) return;
        if (a <= l && r <= b && smx_v[i] < x) {
            update_node_max(i, x); return;
        }

        eval(i);
        chmin(i * 2 + 1, a, b, l, (l + r) / 2, x);
        chmin(i * 2 + 2, a, b, (l + r) / 2, r, x);
        proc(i);
    }
    void chmax(int i, int a, int b, int l, int r, T x) {
        if (b <= l || r <= a || mn_v[i] >= x) return;
        if (a <= l && r <= b && smn_v[i] > x) {
            update_node_min(i, x); return;
        }

        eval(i);
        chmax(i * 2 + 1, a, b, l, (l + r) / 2, x);
        chmax(i * 2 + 2, a, b, (l + r) / 2, r, x);
        proc(i);
    }

};

signed main() {
    int n, k, t; cin >> n >> k >> t;
    if (k * t >= abs(n)) cyes;
    else cno;
}
0