結果

問題 No.1227 I hate ThREE
ユーザー LayCurseLayCurse
提出日時 2020-09-11 22:59:36
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 11,382 bytes
コンパイル時間 13,411 ms
コンパイル使用メモリ 272,848 KB
最終ジャッジ日時 2025-01-14 11:22:42
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 29 TLE * 4
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:500:24: warning: 'hCmBdyQB' may be used uninitialized [-Wmaybe-uninitialized]
  500 |     g.setEdgeRootedTree(N,N-1,A,B,hCmBdyQB,1);
      |     ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
main.cpp:491:9: note: 'hCmBdyQB' was declared here
  491 |     int hCmBdyQB;
      |         ^~~~~~~~
main.cpp:494:33: warning: 'tU__gIr_' may be used uninitialized [-Wmaybe-uninitialized]
  494 |       if(ao_dF3pO==0 || tU__gIr_>a2conNHc){
      |                         ~~~~~~~~^~~~~~~~~
main.cpp:489:9: note: 'tU__gIr_' was declared here
  489 |     int tU__gIr_;
      |         ^~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void*wmem;
char memarr[96000000];
template<class S, class T> inline S max_L(S a,T b){
return a>=b?a:b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
struct graph{
int N;
int*es;
int**edge;
void setEdge(int N__, int M, int A[], int B[], void **mem = &wmem){
int i;
N = N__;
walloc1d(&es, N, mem);
walloc1d(&edge, N, mem);
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
es[A[i]]++;
es[B[i]]++;
}
for(i=(0);i<(N);i++){
walloc1d(&edge[i], es[i], mem);
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
edge[A[i]][es[A[i]]++] = B[i];
edge[B[i]][es[B[i]]++] = A[i];
}
}
void setEdgeRootedTree(int N__, int M, int A[], int B[], int root=0, int reorder=0, int cnv[] = NULL, void **mem = &wmem){
int i;
int j;
int k;
int*dist;
int*q;
int qs;
int qe;
int*ind;
void*tmem;
N = N__;
tmem = ((char*)(*mem)) + (sizeof(int) * N + 15) + (sizeof(int*) * N + 15) + (sizeof(int) * M + 15 * N);
walloc1d(&es, N, mem);
walloc1d(&edge, N, mem);
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
es[A[i]]++;
es[B[i]]++;
}
for(i=(0);i<(N);i++){
walloc1d(&edge[i], es[i], &tmem);
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
edge[A[i]][es[A[i]]++] = B[i];
edge[B[i]][es[B[i]]++] = A[i];
}
walloc1d(&dist, N, &tmem);
walloc1d(&q, N, &tmem);
walloc1d(&ind, N, &tmem);
if(cnv==NULL){
walloc1d(&cnv, N, &tmem);
}
for(i=(0);i<(N);i++){
dist[i] = -1;
}
dist[root] = 0;
qs = qe = 0;
q[qe++] = root;
while(qs < qe){
i = q[qs++];
for(j=(0);j<(es[i]);j++){
k = edge[i][j];
if(dist[k]==-1){
dist[k] = dist[i] + 1;
q[qe++] = k;
}
}
}
if(reorder == 0){
for(i=(0);i<(N);i++){
cnv[i] = i;
}
for(i=(0);i<(N);i++){
ind[i] = i;
}
}
else{
for(i=(0);i<(N);i++){
cnv[i] = q[i];
}
for(i=(0);i<(N);i++){
ind[cnv[i]] = i;
}
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
j = A[i];
k = B[i];
if(dist[j] > dist[k]){
swap(j, k);
}
es[ind[j]]++;
}
for(i=(0);i<(N);i++){
walloc1d(&edge[i], es[i], mem);
}
for(i=(0);i<(N);i++){
es[i] = 0;
}
for(i=(0);i<(M);i++){
j = A[i];
k = B[i];
if(dist[j] > dist[k]){
swap(j, k);
}
j = ind[j];
k = ind[k];
edge[j][es[j]++] = k;
}
}
void getDist(int root, int res[], void *mem = wmem){
int i;
int j;
int k;
int*q;
int s;
int z;
walloc1d(&q, N, &mem);
for(i=(0);i<(N);i++){
res[i]=-1;
}
res[root]=0;
s=0;
z=1;
q[0]=root;
while(z){
i=q[s++];
z--;
for(j=(0);j<(es[i]);j++){
k=edge[i][j];
if(res[k]>=0){
continue;
}
res[k]=res[i]+1;
q[s+z++]=k;
}
}
}
}
;
int N;
int A[1000];
int B[1000];
int C;
graph g;
int dist[1001];
int dmax[1001];
Modint memo[1001];
Modint dp[1000][1001];
int main(){
int i, r;
wmem = memarr;
Modint res = 0;
Modint tmp;
rd(N);
rd(C);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N-1);Lj4PdHRW++){
rd(A[Lj4PdHRW]);A[Lj4PdHRW] += (-1);
rd(B[Lj4PdHRW]);B[Lj4PdHRW] += (-1);
}
}
g.setEdge(N,N-1,A,B);
for(i=(0);i<(N);i++){
g.getDist(i,dist);
{
int RZTsC2BF;
int FmcKpFmN;
if(N==0){
FmcKpFmN = 0;
}
else{
FmcKpFmN = dist[0];
for(RZTsC2BF=(1);RZTsC2BF<(N);RZTsC2BF++){
FmcKpFmN = max_L(FmcKpFmN, dist[RZTsC2BF]);
}
}
dmax[i] =FmcKpFmN;
}
}
{
int KrdatlYV;
int ao_dF3pO = 0;
int tU__gIr_;
int a2conNHc;
int hCmBdyQB;
for(KrdatlYV=(0);KrdatlYV<(((N)-1)+1);KrdatlYV++){
a2conNHc = dmax[KrdatlYV];
if(ao_dF3pO==0 || tU__gIr_>a2conNHc){
tU__gIr_ = a2conNHc;
ao_dF3pO = 1;
hCmBdyQB = KrdatlYV;
}
}
g.setEdgeRootedTree(N,N-1,A,B,hCmBdyQB,1);
}
for(r=(2);r<(N+1);r++){
int j, k;
for(i=(N)-1;i>=(0);i--){
int j;
for(j=(0);j<(r);j++){
int XJIcIBrW;
tmp = 1;
for(XJIcIBrW=(0);XJIcIBrW<(g.es[i]);XJIcIBrW++){
auto &k = g.edge[i][XJIcIBrW];
if(j-1 >= 0){
if(j+1 < r){
tmp *=dp[k][j-1]+dp[k][j+1];
}
else{
tmp *=dp[k][j-1]+0;
}
}
else{
if(j+1 < r){
tmp *=0+dp[k][j+1];
}
else{
tmp *=0+0;
}
}
}
dp[i][j] = tmp;
}
}
for(j=(0);j<(r);j++){
memo[r] += dp[0][j];
}
for(j=(1);j<(r);j++){
memo[r] -= memo[j] * (r-j+1);
}
if(memo[r]==0){
break;
}
for(k=(0);k<(3);k++){
i = (C + k) / 3;
if(i >= r){
res += memo[r] * (i-r+1);
}
}
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200911-1
// --- original code ---
// int N, A[1000], B[1000], C;
// graph g;
//
// int dist[1001], dmax[1001];
// Modint memo[1001];
// Modint dp[1000][1001];
//
// {
//
// Modint res = 0, tmp;
// rd(N,C,(A--,B--)(N-1));
//
// g.setEdge(N,N-1,A,B);
// rep(i,N) g.getDist(i,dist), dmax[i] = max(dist(N));
// g.setEdgeRootedTree(N,N-1,A,B,argmin(dmax(N)),1);
//
// rep(r,2,N+1){
// rrep(i,N) rep(j,r){
// tmp = 1;
// rep[g.edge[i]](k,g.es[i]){
// // wt("edge",i,k);
// tmp *= if[j-1 >= 0, dp[k][j-1], 0] + if[j+1 < r, dp[k][j+1], 0];
// }
// dp[i][j] = tmp;
// // wt(r,i,j,tmp);
// }
// rep(j,r) memo[r] += dp[0][j];
// rep(j,1,r) memo[r] -= memo[j] * (r-j+1);
// if(memo[r]==0) break;
// // wt("r",r,memo[r]);
//
// rep(k,3){
// i = (C + k) / 3;
// if(i >= r) res += memo[r] * (i-r+1);
// }
// }
//
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0