結果
| 問題 |
No.186 中華風 (Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-09-13 23:26:04 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 12 ms / 2,000 ms |
| コード長 | 2,967 bytes |
| コンパイル時間 | 1,786 ms |
| コンパイル使用メモリ | 195,908 KB |
| 最終ジャッジ日時 | 2025-01-14 14:36:57 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 23 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define elif else if
#define sp(x) fixed << setprecision(x)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
const double pi = acos(-1.0);
const double EPS = 1e-10;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};
//ユークリッドの互除法を用いた計算
//計算量 O(log(max(A, B)))
template<typename T>
struct Euclid{
Euclid() = default;
T gcd(const T &a, const T &b) const{
if(b == 0) return a;
else return gcd(b, a%b);
}
T lcm(const T &a, const T &b) const {return a*(b/gcd(a,b));}
T extgcd(const T &a, const T &b, T &x, T &y) const{
if(b == 0) {x = 1, y = 0; return a;}
T g = extgcd(b, a%b, y, x);
y -= (a/b)*x;
return g;
}
T mod(const T &a, const T &m) const{
T ret = a%m;
return ret+(ret < 0? m : 0);
}
T modinv(const T &a, const T &m) const{ //aとmは互いに素
T x, y;
extgcd(a, m, x, y);
return mod(x, m);
}
T floor_sum(const T &n, const T &m, T a, T b) const{ //Σ(floor((a*i+b)/m)) (0<=i<n)
T ret = (a/m)*(n*(n-1)/2) + (b/m)*n;
a %= m, b %= m;
T y = (a*n+b)/m;
if(y == 0) return ret;
ret += floor_sum(y, a, m, a*n-(m*y-b));
return ret;
}
pair<T, T> Chinese_rem(const T &a1, const T &m1, const T &a2, const T &m2) const{
T x, y, g = extgcd(m1, m2, x, y);
if((a2-a1)%g != 0) return make_pair(0, -1);
T m = m1*(m2/g);
T tmp = mod(x*((a2-a1)/g), m2/g);
T a = (m1*tmp+a1) % m;
return make_pair(a, m);
}
T Garner(vector<T> a, vector<T> m, const T &M) const{
m.pb(M);
vector<T> coeffs(sz(m), 1);
vector<T> constants(sz(m), 0);
rep(k, sz(a)){
T t = mod((a[k]-constants[k]) * modinv(coeffs[k], m[k]), m[k]);
rep2(i, k+1, sz(m)-1){
constants[i] += t*coeffs[i], constants[i] %= m[i];
coeffs[i] *= m[k], coeffs[i] %= m[i];
}
}
return constants.back();
}
};
int main(){
ll a[3], m[3];
rep(i, 3) cin >> a[i] >> m[i];
Euclid<ll> E;
ll A = 0, M = 1;
rep(i, 3){
pll p = E.Chinese_rem(A, M, a[i], m[i]);
if(p.second == -1) {cout << -1 << endl; return 0;}
tie(A, M) = p;
}
cout << (A == 0? M : A) << endl;
}