結果
問題 | No.1112 冥界の音楽 |
ユーザー | stoq |
提出日時 | 2020-09-14 04:53:57 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 19 ms / 2,000 ms |
コード長 | 7,522 bytes |
コンパイル時間 | 3,381 ms |
コンパイル使用メモリ | 224,960 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-13 04:57:04 |
合計ジャッジ時間 | 3,690 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,944 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 7 ms
6,940 KB |
testcase_15 | AC | 3 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 4 ms
6,940 KB |
testcase_18 | AC | 4 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 6 ms
6,944 KB |
testcase_22 | AC | 6 ms
6,940 KB |
testcase_23 | AC | 3 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,944 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 7 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 8 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 19 ms
6,944 KB |
ソースコード
#define MOD_TYPE 1 #pragma region Macros #include <bits/stdc++.h> using namespace std; #if 0 #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); //constexpr ll MOD = 1; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-11; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion #pragma region mint template <int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) v += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator-() const noexcept { return val ? MOD - val : 0; } constexpr Fp operator+(const Fp &r) const noexcept { return Fp(*this) += r; } constexpr Fp operator-(const Fp &r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator*(const Fp &r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator/(const Fp &r) const noexcept { return Fp(*this) /= r; } constexpr Fp &operator+=(const Fp &r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp &operator-=(const Fp &r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp &operator*=(const Fp &r) noexcept { val = val * r.val % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp &operator/=(const Fp &r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator==(const Fp &r) const noexcept { return this->val == r.val; } constexpr bool operator!=(const Fp &r) const noexcept { return this->val != r.val; } friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept { return os << x.val; } friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept { return is >> x.val; } }; Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } using mint = Fp<MOD>; #pragma endregion template <typename T> class Matrix { public: size_t N, M; vector<vector<T>> data; Matrix(size_t N_, size_t M_) : N(N_), M(M_) { data.resize(N, vector<T>(M)); } Matrix operator+(const Matrix &A) { assert(A.N == N && A.M == M); Matrix res(N, M); rep(i, N) rep(j, M) res[i][j] = data[i][j] + A[i][j]; return res; } Matrix &operator+=(const Matrix &A) { assert(A.N == N && A.M == M); rep(i, N) rep(j, M) data[i][j] += A[i][j]; return *this; } Matrix operator-(const Matrix &A) { assert(A.N == N && A.M == M); Matrix<T> res(N, M); rep(i, N) rep(j, M) res.data[i][j] = data[i][j] - A[i][j]; return res; } Matrix &operator-=(const Matrix &A) { assert(A.N == N && A.M == M); rep(i, N) rep(j, M) data[i][j] -= A[i][j]; return *this; } Matrix operator*(const Matrix &A) { assert(M == A.N); Matrix res(N, A.M); rep(i, N) rep(j, A.M) { rep(k, M) res[i][j] += data[i][k] * A[k][j]; } return res; } Matrix &operator*=(const Matrix<T> &A) { return *this = *this * A; } Matrix operator*(T a) { Matrix res(N, M); rep(i, N) rep(j, M) res[i][j] = data[i][j] * a; return res; } Matrix &operator*=(ll a) { rep(i, N) rep(j, M) data[i][j] *= a; return *this; } inline const vector<T> &operator[](int index) const { return (data.at(index)); } inline vector<T> &operator[](int index) { return (data.at(index)); } bool operator==(Matrix &A) { if (N != A.N || M != A.M) return false; rep(i, N) rep(j, M) { if (data[i][j] != A[i][j]) return false; } return true; } bool operator!=(Matrix &A) { return !(*this == A); } Matrix transpose() { Matrix res(M, N); rep(i, N) rep(j, M) res[j][i] = data[i][j]; return res; } T trace() { assert(N == M); T res = 0; rep(i, N) res += data[i][i]; return res; } void display() { rep(i, N) { rep(j, M) cerr << data[i][j] << " "; cerr << "\n"; } } Matrix E(const int n) { Matrix res(n, n); rep(i, n) rep(j, n) res[i][j] = (i == j); return res; } Matrix pow(ll n) { assert(N == M); Matrix P = *this, res = E(N); while (n > 0) { if (n & 1) res *= P; P *= P; n >>= 1; } return res; } }; template <typename T> Matrix<T> operator*(ll a, Matrix<T> &A) { Matrix<T> res(A.N, A.M); rep(i, A.N) rep(j, A.M) res[i][j] = A[i][j] * a; return res; } void solve() { int k, m; ll n; cin >> k >> m >> n; Matrix<mint> tran(k * k, k * k), A(k * k, 1); rep(i, k * k) rep(j, k * k) tran[i][j] = 0; rep(i, k * k) A[i][0] = 0; rep(i, m) { int p, q, r; cin >> p >> q >> r; p--, q--, r--; A[0 * k + p][0] = 1; tran[q * k + r][p * k + q] = 1; } tran = tran.pow(n - 2); A = tran * A; mint ans = 0; rep(i, k) ans += A[i * k + 0][0]; cout << ans << "\n"; } int main() { solve(); }