結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | rniya |
提出日時 | 2020-09-14 16:23:08 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 8,193 bytes |
コンパイル時間 | 1,388 ms |
コンパイル使用メモリ | 173,752 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-22 00:51:24 |
合計ジャッジ時間 | 1,933 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define LOCAL #pragma region Macros typedef long long ll; #define ALL(x) (x).begin(),(x).end() const long long MOD=1000000007; // const long long MOD=998244353; const int INF=1e9; const long long IINF=1e18; const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; const char dir[4]={'D','R','U','L'}; template<typename T> istream &operator>>(istream &is,vector<T> &v){ for (T &x:v) is >> x; return is; } template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){ for (int i=0;i<v.size();++i){ os << v[i] << (i+1==v.size()?"": " "); } return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const pair<T,U> &p){ os << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const map<T,U> &m){ os << '{'; for (auto itr=m.begin();itr!=m.end();++itr){ os << '(' << itr->first << ',' << itr->second << ')'; if (++itr!=m.end()) os << ','; --itr; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const set<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();++itr){ os << *itr; if (++itr!=s.end()) os << ','; --itr; } os << '}'; return os; } void debug_out(){cerr << '\n';} template<class Head,class... Tail> void debug_out(Head&& head,Tail&&... tail){ cerr << head; if (sizeof...(Tail)>0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) cerr << " ";\ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\ cerr << " ";\ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;} template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;} template<class T1,class T2> inline bool chmin(T1 &a,T2 b){ if (a>b){a=b; return true;} return false; } template<class T1,class T2> inline bool chmax(T1 &a,T2 b){ if (a<b){a=b; return true;} return false; } #pragma endregion class runtime_modint{ using u64=uint_fast64_t; static u64 &mod(){ static u64 mod_=0; return mod_; } public: u64 a; static void set_mod(const u64 x){mod()=x;} static u64 get_mod(){return mod();} runtime_modint(const u64 x=0):a(x%get_mod()){} u64 &balue() noexcept{return a;} const u64 &value() const noexcept{return a;} runtime_modint &operator+=(const runtime_modint &rhs){ a+=rhs.a; if (a>=get_mod()) a-=get_mod(); return *this; } runtime_modint operator+(const runtime_modint &rhs) const{ return runtime_modint(*this)+=rhs; } runtime_modint &operator-=(const runtime_modint &rhs){ if (a<rhs.a) a+=get_mod(); a-=rhs.a; return *this; } runtime_modint operator-(const runtime_modint &rhs) const{ return runtime_modint(*this)-=rhs; } runtime_modint &operator*=(const runtime_modint &rhs){ a=a*rhs.a%get_mod(); return *this; } runtime_modint operator*(const runtime_modint &rhs) const{ return runtime_modint(*this)*=rhs; } runtime_modint &operator/=(runtime_modint rhs){ u64 exp=get_mod()-2; while(exp){ if (exp&1) *this*=rhs; rhs*=rhs; exp>>=1; } return *this; } runtime_modint operator/(const runtime_modint &rhs) const{ return runtime_modint(*this)/=rhs; } friend runtime_modint pow(runtime_modint rhs,long long exp) noexcept{ runtime_modint res{1}; while(exp){ if (exp&1) res*=rhs; rhs*=rhs; exp>>=1; } return res; } friend ostream &operator<<(ostream &s,const runtime_modint &rhs){ return s << rhs.a; } friend istream &operator>>(istream &s,runtime_modint &rhs){ u64 a; rhs=runtime_modint{(s >> a,a)}; return s; } }; template<class K> struct Matrix{ vector<vector<K>> dat; Matrix(size_t r,size_t c):dat(r,vector<K>(c,K())){} Matrix(size_t n):dat(n,vector<K>(n,K())){} Matrix(vector<vector<K>> dat):dat(dat){} size_t size() const{return dat.size();} vector<K> &operator[](int i){return dat[i];} const vector<K> &operator[](int i) const{return dat[i];} static Matrix I(size_t n){ Matrix res(n); for (int i=0;i<n;++i) res[i][i]=K(1); return res; } Matrix &operator+=(const Matrix &B){ for (int i=0;i<dat.size();++i) for (int j=0;j<dat[0].size();++j) (*this)[i][j]+=B[i][j]; return (*this); } Matrix operator+(const Matrix &B) const{ return Matrix(*this)+=B; } Matrix &operator-=(const Matrix &B){ for (int i=0;i<dat.size();++i) for (int j=0;j<dat[0].size();++j) (*this)[i][j]-=B[i][j]; return (*this); } Matrix operator-(const Matrix &B) const{ return Matrix(*this)-=B; } Matrix &operator*=(const Matrix &B){ vector<vector<K>> res(dat.size(),vector<K>(B[0].size(),K())); for (int i=0;i<dat.size();++i) for (int j=0;j<B[0].size();++j) for (int k=0;k<B.size();++k) res[i][j]+=(*this)[i][k]*B[k][j]; dat.swap(res); return (*this); } Matrix operator*(const Matrix &B) const{ return Matrix(*this)*=B; } Matrix &operator^=(long long k){ Matrix res=Matrix::I(size()); while(k){ if (k&1LL) res*=*this; *this*=*this; k>>=1LL; } dat.swap(res.dat); return (*this); } Matrix operator^(long long k) const{ return Matrix(*this)^=k; } static Matrix Gauss_Jordan(const Matrix &A,const Matrix &B){ int n=A.size(),l=B[0].size(); Matrix C(n,n+l); for (int i=0;i<n;++i){ for (int j=0;j<n;++j) C[i][j]=A[i][j]; for (int j=0;j<l;++j) C[i][j+n]=B[i][j]; } for (int i=0;i<n;++i){ int p=i; for (int j=i;j<n;++j){ if (abs(C[p][i])<abs(C[j][i])) p=j; } swap(C[i],C[p]); if (abs(C[i][i])<1e-9) return Matrix(0,0); for (int j=i+1;j<n+l;++j) C[i][j]/=C[i][i]; for (int j=0;j<n;++j){ if (i!=j) for (int k=i+1;k<n+l;++k){ C[j][k]-=C[j][i]*C[i][k]; } } } Matrix res(n,l); for (int i=0;i<n;++i) for (int j=0;j<n;++j) res[i][j]=C[i][j+n]; return res; } Matrix inv() const{ Matrix res=I(size()); return Gauss_Jordan(*this,res); } K determinant() const{ Matrix A(dat); K res(1); int n=size(); for (int i=0;i<n;++i){ int p=i; for (int j=i;j<n;++j){ if (abs(A[p][i])<abs(A[j][i])) p=j; } if (i!=p) swap(A[i],A[p]),res=-res; if (abs(A[i][i])<1e-9) return K(0); res*=A[i][i]; for (int j=i+1;j<n;++j) A[i][j]/=A[i][i]; for (int j=i+1;j<n;++j) for (int k=i+1;k<n;++k) A[j][k]-=A[j][i]*A[i][k]; } return res; } //sum_{k=0}^{n-1} x^k static K geometric_sum(K x,long long n){ Matrix A(2); A[0][0]=x; A[0][1]=0; A[1][0]=1; A[1][1]=1; return (A^n)[1][0]; } //sum_{k=0}^{n-1} A^k Matrix powsum(long long k) const{ int n=size(); Matrix B(n<<1),res(n); for (int i=0;i<n;++i){ for (int j=0;j<n;++j) B[i][j]=dat[i][j]; B[i+n][i]=B[i+n][i+n]=K(1); } B^=k; for (int i=0;i<n;++i) for (int j=0;j<n;++j) res[i][j]=B[i+n][j]; return res; } }; using mint=runtime_modint; int main(){ cin.tie(0); ios::sync_with_stdio(false); int N,M; cin >> N >> M; mint::set_mod(M); Matrix<mint> m(2); m[0][1]=m[1][0]=m[1][1]=1; m^=N; cout << m[0][0] << '\n'; }