結果
| 問題 |
No.526 フィボナッチ数列の第N項をMで割った余りを求める
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2020-09-14 16:23:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 8,193 bytes |
| コンパイル時間 | 1,388 ms |
| コンパイル使用メモリ | 173,752 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-22 00:51:24 |
| 合計ジャッジ時間 | 1,933 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define LOCAL
#pragma region Macros
typedef long long ll;
#define ALL(x) (x).begin(),(x).end()
const long long MOD=1000000007;
// const long long MOD=998244353;
const int INF=1e9;
const long long IINF=1e18;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const char dir[4]={'D','R','U','L'};
template<typename T>
istream &operator>>(istream &is,vector<T> &v){
for (T &x:v) is >> x;
return is;
}
template<typename T>
ostream &operator<<(ostream &os,const vector<T> &v){
for (int i=0;i<v.size();++i){
os << v[i] << (i+1==v.size()?"": " ");
}
return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const pair<T,U> &p){
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const map<T,U> &m){
os << '{';
for (auto itr=m.begin();itr!=m.end();++itr){
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr!=m.end()) os << ',';
--itr;
}
os << '}';
return os;
}
template<typename T>
ostream &operator<<(ostream &os,const set<T> &s){
os << '{';
for (auto itr=s.begin();itr!=s.end();++itr){
os << *itr;
if (++itr!=s.end()) os << ',';
--itr;
}
os << '}';
return os;
}
void debug_out(){cerr << '\n';}
template<class Head,class... Tail>
void debug_out(Head&& head,Tail&&... tail){
cerr << head;
if (sizeof...(Tail)>0) cerr << ", ";
debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) cerr << " ";\
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\
cerr << " ";\
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;}
template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;}
template<class T1,class T2> inline bool chmin(T1 &a,T2 b){
if (a>b){a=b; return true;} return false;
}
template<class T1,class T2> inline bool chmax(T1 &a,T2 b){
if (a<b){a=b; return true;} return false;
}
#pragma endregion
class runtime_modint{
using u64=uint_fast64_t;
static u64 &mod(){
static u64 mod_=0;
return mod_;
}
public:
u64 a;
static void set_mod(const u64 x){mod()=x;}
static u64 get_mod(){return mod();}
runtime_modint(const u64 x=0):a(x%get_mod()){}
u64 &balue() noexcept{return a;}
const u64 &value() const noexcept{return a;}
runtime_modint &operator+=(const runtime_modint &rhs){
a+=rhs.a;
if (a>=get_mod()) a-=get_mod();
return *this;
}
runtime_modint operator+(const runtime_modint &rhs) const{
return runtime_modint(*this)+=rhs;
}
runtime_modint &operator-=(const runtime_modint &rhs){
if (a<rhs.a) a+=get_mod();
a-=rhs.a;
return *this;
}
runtime_modint operator-(const runtime_modint &rhs) const{
return runtime_modint(*this)-=rhs;
}
runtime_modint &operator*=(const runtime_modint &rhs){
a=a*rhs.a%get_mod();
return *this;
}
runtime_modint operator*(const runtime_modint &rhs) const{
return runtime_modint(*this)*=rhs;
}
runtime_modint &operator/=(runtime_modint rhs){
u64 exp=get_mod()-2;
while(exp){
if (exp&1) *this*=rhs;
rhs*=rhs; exp>>=1;
}
return *this;
}
runtime_modint operator/(const runtime_modint &rhs) const{
return runtime_modint(*this)/=rhs;
}
friend runtime_modint pow(runtime_modint rhs,long long exp) noexcept{
runtime_modint res{1};
while(exp){
if (exp&1) res*=rhs;
rhs*=rhs; exp>>=1;
}
return res;
}
friend ostream &operator<<(ostream &s,const runtime_modint &rhs){
return s << rhs.a;
}
friend istream &operator>>(istream &s,runtime_modint &rhs){
u64 a; rhs=runtime_modint{(s >> a,a)}; return s;
}
};
template<class K>
struct Matrix{
vector<vector<K>> dat;
Matrix(size_t r,size_t c):dat(r,vector<K>(c,K())){}
Matrix(size_t n):dat(n,vector<K>(n,K())){}
Matrix(vector<vector<K>> dat):dat(dat){}
size_t size() const{return dat.size();}
vector<K> &operator[](int i){return dat[i];}
const vector<K> &operator[](int i) const{return dat[i];}
static Matrix I(size_t n){
Matrix res(n);
for (int i=0;i<n;++i) res[i][i]=K(1);
return res;
}
Matrix &operator+=(const Matrix &B){
for (int i=0;i<dat.size();++i)
for (int j=0;j<dat[0].size();++j)
(*this)[i][j]+=B[i][j];
return (*this);
}
Matrix operator+(const Matrix &B) const{
return Matrix(*this)+=B;
}
Matrix &operator-=(const Matrix &B){
for (int i=0;i<dat.size();++i)
for (int j=0;j<dat[0].size();++j)
(*this)[i][j]-=B[i][j];
return (*this);
}
Matrix operator-(const Matrix &B) const{
return Matrix(*this)-=B;
}
Matrix &operator*=(const Matrix &B){
vector<vector<K>> res(dat.size(),vector<K>(B[0].size(),K()));
for (int i=0;i<dat.size();++i)
for (int j=0;j<B[0].size();++j)
for (int k=0;k<B.size();++k)
res[i][j]+=(*this)[i][k]*B[k][j];
dat.swap(res);
return (*this);
}
Matrix operator*(const Matrix &B) const{
return Matrix(*this)*=B;
}
Matrix &operator^=(long long k){
Matrix res=Matrix::I(size());
while(k){
if (k&1LL) res*=*this;
*this*=*this; k>>=1LL;
}
dat.swap(res.dat);
return (*this);
}
Matrix operator^(long long k) const{
return Matrix(*this)^=k;
}
static Matrix Gauss_Jordan(const Matrix &A,const Matrix &B){
int n=A.size(),l=B[0].size();
Matrix C(n,n+l);
for (int i=0;i<n;++i){
for (int j=0;j<n;++j)
C[i][j]=A[i][j];
for (int j=0;j<l;++j)
C[i][j+n]=B[i][j];
}
for (int i=0;i<n;++i){
int p=i;
for (int j=i;j<n;++j){
if (abs(C[p][i])<abs(C[j][i])) p=j;
}
swap(C[i],C[p]);
if (abs(C[i][i])<1e-9) return Matrix(0,0);
for (int j=i+1;j<n+l;++j) C[i][j]/=C[i][i];
for (int j=0;j<n;++j){
if (i!=j) for (int k=i+1;k<n+l;++k){
C[j][k]-=C[j][i]*C[i][k];
}
}
}
Matrix res(n,l);
for (int i=0;i<n;++i)
for (int j=0;j<n;++j)
res[i][j]=C[i][j+n];
return res;
}
Matrix inv() const{
Matrix res=I(size());
return Gauss_Jordan(*this,res);
}
K determinant() const{
Matrix A(dat);
K res(1);
int n=size();
for (int i=0;i<n;++i){
int p=i;
for (int j=i;j<n;++j){
if (abs(A[p][i])<abs(A[j][i])) p=j;
}
if (i!=p) swap(A[i],A[p]),res=-res;
if (abs(A[i][i])<1e-9) return K(0);
res*=A[i][i];
for (int j=i+1;j<n;++j) A[i][j]/=A[i][i];
for (int j=i+1;j<n;++j)
for (int k=i+1;k<n;++k)
A[j][k]-=A[j][i]*A[i][k];
}
return res;
}
//sum_{k=0}^{n-1} x^k
static K geometric_sum(K x,long long n){
Matrix A(2);
A[0][0]=x; A[0][1]=0;
A[1][0]=1; A[1][1]=1;
return (A^n)[1][0];
}
//sum_{k=0}^{n-1} A^k
Matrix powsum(long long k) const{
int n=size();
Matrix B(n<<1),res(n);
for (int i=0;i<n;++i){
for (int j=0;j<n;++j)
B[i][j]=dat[i][j];
B[i+n][i]=B[i+n][i+n]=K(1);
}
B^=k;
for (int i=0;i<n;++i)
for (int j=0;j<n;++j)
res[i][j]=B[i+n][j];
return res;
}
};
using mint=runtime_modint;
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int N,M; cin >> N >> M;
mint::set_mod(M);
Matrix<mint> m(2);
m[0][1]=m[1][0]=m[1][1]=1;
m^=N;
cout << m[0][0] << '\n';
}
rniya