結果

問題 No.1361 [Zelkova 4th Tune *] QUADRUPLE-SEQUENCEの詩
ユーザー 👑 KazunKazun
提出日時 2020-09-14 23:07:55
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,002 ms / 2,000 ms
コード長 3,587 bytes
コンパイル時間 383 ms
コンパイル使用メモリ 81,792 KB
実行使用メモリ 181,504 KB
最終ジャッジ日時 2024-12-27 18:31:01
合計ジャッジ時間 29,154 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 74
権限があれば一括ダウンロードができます

ソースコード

diff #

def General_Binary_Increase_Search(L,R,cond,Integer=True,ep=1/(1<<20)):
    """条件式が単調増加であるとき,一般的な二部探索を行う.
    L:解の下限
    R:解の上限
    cond:条件(1変数関数,広義単調減少 or 広義単調減少を満たす)
    Integer:解を整数に制限するか?
    ep:Integer=Falseのとき,解の許容する誤差
    """
    if not(cond(R)):
        return False

    if Integer:
        R+=1
        while R-L>1:
            C=L+(R-L)//2
            if cond(C):
                R=C
            else:
                L=C
        return R
    else:
        while (R-L)>=ep:
            C=L+(R-L)/2
            if cond(C):
                R=C
            else:
                L=C
        return R
#================================================
def f(x): #負の時の判定
    Z=0

    I=0
    for u in U_pos:
        if I<V_negative:
            while u*V_neg[I]<=x:
                I+=1

                if I==V_negative:
                    break
        Z+=I

    I=0
    for v in V_pos:
        if I<U_negative:
            while v*U_neg[I]<=x:
                I+=1

                if I==U_negative:
                    break
        Z+=I

    return Z

def g(x): #正の時の判定
    Z=0

    I=V_positive
    for u in U_pos:
        if I>0:
            while u*V_pos[I-1]>x:
                I-=1

                if I==0:
                    break
        Z+=I

    I=0
    for v in V_neg:
        if I<U_negative:
            while v*U_neg[-(I+1)]<=x:
                I+=1

                if I==U_negative:
                    break
        Z+=I

    return Z
#================================================
# pq=x なる p in G,q in H を求める.
def h(x,G,H):
    if x==0:
        if 0 in G:
            return (0,H[0])
        else:
            return (G[0],0)

    H=set(H)
    for g in G:
        if g==0:
            continue

        if (x%g==0) and (x//g in H):
            return (g,x//g)
    return None
#================================================
#入力
K,L,M,N,S=map(int,input().split())

A=list(map(int,input().split()))
B=list(map(int,input().split()))
C=list(map(int,input().split()))
D=list(map(int,input().split()))

#================================================
# (A,B),(C,D)の2つに分けて考える.
U=[a*b for a in A for b in B]
U.sort()
V=[c*d for c in C for d in D]
V.sort()

U_pos=[u for u in U if u>0]
U_neg=[u for u in U if u<0]

V_pos=[v for v in V if v>0]
V_neg=[v for v in V if v<0]

U_positive=len(U_pos)
U_negative=len(U_neg)
U_zero=K*L-(U_positive+U_negative)

V_positive=len(V_pos)
V_negative=len(V_neg)
V_zero=M*N-(V_positive+V_negative)

#================================================
# Eの正,ゼロ,負の個数を求める
E_positive=U_positive*V_positive+U_negative*V_negative
E_negative=U_positive*V_negative+U_negative*V_positive
E_zero=K*L*M*N-(E_positive+E_negative)

#================================================
# Jを求める.
U_abs_max=abs(max(U,key=lambda u:abs(u)))
V_abs_max=abs(max(V,key=lambda v:abs(v)))
Abs_max=U_abs_max*V_abs_max+1

if S<=E_negative: #負確定
    Ans=General_Binary_Increase_Search(-Abs_max,0,lambda x:f(x)>=S)
elif E_negative+1<=S<=E_negative+E_zero: #ゼロ確定
    Ans=0
else: #正確定
    Ans=General_Binary_Increase_Search(0,Abs_max,lambda x:g(x)>=S-(E_negative+E_zero))

#================================================
# T=abcd なる a,b,c,dを求める.
alpha,beta=h(Ans,U,V)
a,b=h(alpha,A,B)
c,d=h(beta ,C,D)

#================================================
#出力
print(Ans)
print(a,b,c,d)
0