結果

問題 No.754 畳み込みの和
ユーザー ateate
提出日時 2020-09-14 23:51:26
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 296 ms / 5,000 ms
コード長 6,876 bytes
コンパイル時間 1,254 ms
コンパイル使用メモリ 94,732 KB
最終ジャッジ日時 2025-01-14 14:51:30
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 295 ms
14,984 KB
testcase_01 AC 296 ms
15,108 KB
testcase_02 AC 295 ms
14,988 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<vector>
#include<cassert>
#include<tuple>

constexpr int primitive_root(int m){
  if(m==2)return 1;
  if(m==167772161)return 3;
  if(m==469762049)return 3;
  if(m==754974721)return 11;
  if(m==998244353)return 3;
  return 0;
}

template<int64_t p>
struct F_p{
  using value_type = int64_t;
  static constexpr inline value_type get_mod(){return p;}

  value_type value;

  constexpr F_p():value(value_type{}){}
  template<class T>constexpr F_p(T v):value(static_cast<value_type>(v<0?v%p+p:v%p)){}
// operator +, -, *, /, ^ 
  constexpr F_p operator + (const F_p& other)const{
    return F_p(*this) += other;
  }
  constexpr F_p operator - (const F_p& other)const{
    return F_p(*this) -= other;
  }
  constexpr F_p operator * (const F_p& other)const{
    return F_p(*this) *= other;
  }
  constexpr F_p operator / (const F_p& other)const{
    return F_p(*this) /= other;
  }
  template<class T> constexpr F_p operator ^ (const T other)const{
    return F_p(*this) ^= other;
  }
  constexpr F_p &operator += (const F_p& other){
    value+=other.value;
    if(value>p)value-=p;
    return *this;
  }
  constexpr F_p &operator -= (const F_p& other){
    value-=other.value;
    if(value<0)value+=p;
    return *this;
  }
  constexpr F_p &operator *= (const F_p& other){
    value*=other.value;
    if(value>p)value%=p;
    return *this;
  }
  constexpr F_p &operator /= (const F_p& other){
    value*=other.inverse();
    if(value>p)value%=p;
    return *this;
  }
  template<class T>
  constexpr F_p &operator ^= (const T n){
    value = mpow(n).value;
    return *this;
  }
// ext_gcd,inverse,mpow 
  static constexpr value_type ext_gcd(value_type a,value_type b,value_type& x,value_type& y){
    if(b==0){x=1,y=0;return a;}
    value_type d=ext_gcd(b,a%b,y,x);
    y-=a/b*x;return d;
  }
  constexpr value_type inverse()const{
    value_type x,y;
    ext_gcd(value,p,x,y);
    return x<0?x%p+p:x%p;
  }
  template<class T>
  static constexpr value_type inverse(T val){
    value_type x,y;
    ext_gcd(val,p,x,y);
    return x<0?x%p+p:x%p;
  }
  template<class T>
  constexpr F_p mpow(T n)const{
    F_p res(1),vn(*this);
    while(n){
      if(n&1)res*=vn;
      vn*=vn;
      n>>=1;
    }
    return res;
  }
  template<class T,class U>
  static constexpr T mpow(T a,U b){
    F_p x(a);
    return static_cast<T>(x.mpow(b).value);
  }
// operator iostream 
  constexpr friend std::istream &operator >> (std::istream& is,F_p& fp){
    is>>fp.value;
    return is;
  }constexpr friend std::ostream &operator << (std::ostream& os,const F_p& fp){
    os<<fp.value;
    return os;
  }
};

template<int64_t MOD,int primitive_root>
struct number_theoretic_transform{

  using value_type = F_p<MOD>;
  using vector_t = std::vector<value_type>;
  template<class T>
  static constexpr value_type pow(value_type v,T t){return v^t;}
  static constexpr int64_t get_mod(){return MOD;}

  number_theoretic_transform() = default;

  static void ntt(vector_t& a,bool inv=false){
    const int n = std::size(a);
    for(int i=0,j=1;j+1<n;++j){
      for(int k=n>>1;k>(i^=k);k>>=1);
      if(i<j)std::swap(a[i],a[j]);
    }
    for(int t=2;t<=n;t<<=1){
      value_type bw = pow(primitive_root,(MOD-1)/t);
      if(inv)bw = bw.inverse();
      for(int i=0;i<n;i+=t){
        value_type w = 1;
        for(int j=0;j<t/2;++j){
          const value_type x = a[i+j];
          const value_type y = a[i+j+t/2]*w;
          a[i+j] = x+y;
          a[i+j+t/2] = x-y;
          w *= bw;
        }
      }
    }
    if(inv)for(auto& ai:a)ai/=n;
  }
  template<class T>
  static vector_t convolution(std::vector<T> const& a,std::vector<T> const& b){
    const int sz_a = std::size(a);
    const int sz_b = std::size(b);
    const int m = sz_a+sz_b-1;
    int n = 1;
    while(n<m)n<<=1;
    vector_t ntt_a(n),ntt_b(n),ntt_c(n);
    for(int i=0;i<sz_a;++i)ntt_a[i]=static_cast<value_type>(a[i]);
    for(int i=0;i<sz_b;++i)ntt_b[i]=static_cast<value_type>(b[i]);
    ntt(ntt_a);
    ntt(ntt_b);
    for(int i=0;i<n;++i)ntt_c[i]=ntt_a[i]*ntt_b[i];
    bool inverse = true;
    ntt(ntt_c,inverse);
    ntt_c.resize(m);
    return ntt_c;
  }
};
using NTT_998244353 = number_theoretic_transform<998244353,primitive_root(998244353)>;

struct NTT{
  using NTT_1 = number_theoretic_transform<998244353,3>;
  using NTT_2 = number_theoretic_transform<754974721,11>;
  using NTT_3 = number_theoretic_transform<469762049,3>;
  NTT(){}
  static std::tuple<int64_t,int64_t,int64_t> ext_gcd(int64_t a,int64_t b){
    if(b==0)return {a,1,0};
    auto[d,y,x]=ext_gcd(b,a%b);
    y-=a/b*x;return {d,x,y};
  }
  static constexpr inline int64_t mod(int64_t a,int64_t m){
    a%=m;return(a<0?a+m:a);
  }
  static int64_t mod_inv(int64_t a,int64_t m){
    auto[d,x,y]=ext_gcd(a,m);return(d!=1?-1:mod(x,m));
  }
  static int64_t gerner (std::vector<int64_t> b,std::vector<int64_t> m,int64_t const MOD){
    using i64 = int64_t;
    assert(0<std::size(b));
    assert(std::size(b)==std::size(m));
    int n = std::size(b);
    // gerner
    m.emplace_back(MOD);
    std::vector<i64> coeffs(std::size(m),1);
    std::vector<i64> constants(std::size(m),0);
    for(int k=0;k<n;++k){
      i64 m_inv = mod_inv(coeffs[k],m[k]);
      i64 t = mod((b[k]-constants[k])*m_inv,m[k]);
      for(int i=k+1;i<std::size(m);++i){
        (constants[i] += t*coeffs[i]) %= m[i];
        (coeffs[i] *= m[k]) %= m[i];
      }
    }
    return constants.back();
  }
  template<class T>
  static std::vector<int64_t> convolution(std::vector<T>const& a,std::vector<T>const& b,const int64_t MOD){
    auto ntt1 = NTT_1::convolution(a,b);
    auto ntt2 = NTT_2::convolution(a,b);
    auto ntt3 = NTT_3::convolution(a,b);
    const int n = std::size(a)+std::size(b)-1;
    const int m = 3;
    std::vector<int64_t> conv(n),mods = {NTT_1::get_mod(),NTT_2::get_mod(),NTT_3::get_mod()};
    for(int i=0;i<n;++i){
      std::vector<int64_t> b = {static_cast<int64_t>(ntt1[i].value),
                                static_cast<int64_t>(ntt2[i].value),
                                static_cast<int64_t>(ntt3[i].value)};
      conv[i] = gerner(b,mods,MOD);
    }
    return conv;
  }
};

int main(){
  using namespace std;
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);
  constexpr char newl = '\n';

  int n;
  cin>>n;
  vector<int64_t> a(n+1),b(n+1);
  for(auto& ai:a)cin>>ai;
  for(auto& bi:b)cin>>bi;
  auto c = NTT::convolution(a,b,1e9+7);
  //for(auto ci:c)cout<<ci<<" ";cout<<newl;
  F_p<(int)1e9+7> ans = 0;
  for(int i=0;i<=n and i<size(c);++i)ans+=c[i];
  cout<<(ans)<<endl;
}

void solve_fft(){
  using namespace std;
  std::cin.tie(nullptr);
  std::ios_base::sync_with_stdio(false);
  constexpr char newl = '\n';

  int n;
  cin>>n;
  vector<int64_t> a(n),b(n);
  for(int i=0;i<n;++i)cin>>a[i]>>b[i];
  auto c = NTT_998244353::convolution(a,b);
  cout<<0<<newl;
  for(auto ci:c)cout<<ci<<newl;
}
0