結果

問題 No.1193 Penguin Sequence
ユーザー qumazakiqumazaki
提出日時 2020-09-16 03:07:19
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 747 ms / 2,000 ms
コード長 2,835 bytes
コンパイル時間 299 ms
コンパイル使用メモリ 82,712 KB
実行使用メモリ 156,180 KB
最終ジャッジ日時 2024-06-22 02:58:30
合計ジャッジ時間 21,609 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 342 ms
147,828 KB
testcase_01 AC 705 ms
155,732 KB
testcase_02 AC 718 ms
153,440 KB
testcase_03 AC 722 ms
153,432 KB
testcase_04 AC 730 ms
156,180 KB
testcase_05 AC 725 ms
153,516 KB
testcase_06 AC 714 ms
156,176 KB
testcase_07 AC 724 ms
155,716 KB
testcase_08 AC 726 ms
153,624 KB
testcase_09 AC 719 ms
153,564 KB
testcase_10 AC 747 ms
155,672 KB
testcase_11 AC 384 ms
109,812 KB
testcase_12 AC 381 ms
110,240 KB
testcase_13 AC 579 ms
128,208 KB
testcase_14 AC 535 ms
121,416 KB
testcase_15 AC 674 ms
153,568 KB
testcase_16 AC 267 ms
137,572 KB
testcase_17 AC 54 ms
64,504 KB
testcase_18 AC 122 ms
85,240 KB
testcase_19 AC 684 ms
155,528 KB
testcase_20 AC 515 ms
119,592 KB
testcase_21 AC 437 ms
113,348 KB
testcase_22 AC 133 ms
86,124 KB
testcase_23 AC 374 ms
108,868 KB
testcase_24 AC 333 ms
103,648 KB
testcase_25 AC 187 ms
91,772 KB
testcase_26 AC 109 ms
83,052 KB
testcase_27 AC 576 ms
122,844 KB
testcase_28 AC 413 ms
110,540 KB
testcase_29 AC 551 ms
123,396 KB
testcase_30 AC 248 ms
98,576 KB
testcase_31 AC 203 ms
94,380 KB
testcase_32 AC 462 ms
115,708 KB
testcase_33 AC 345 ms
106,356 KB
testcase_34 AC 290 ms
101,208 KB
testcase_35 AC 354 ms
106,216 KB
testcase_36 AC 293 ms
101,060 KB
testcase_37 AC 554 ms
121,500 KB
testcase_38 AC 54 ms
63,984 KB
testcase_39 AC 54 ms
63,500 KB
testcase_40 AC 54 ms
63,832 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class fenwick_tree():
    def __init__(self, n:int, mod:int = 0):
        self.__mod = mod
        self.__n = n
        self.__data = [0] * self.__n

    def add(self, p:int, x:int):
        assert (0 <= p) & (p < self.__n)
        if(self.__mod == 0):
            self.__add_mod0(p,x)
        else:
            self.__add_mod(p,x)

    def __add_mod0(self, p:int, x:int):
        p+=1
        while( p<= self.__n):
            self.__data[p-1] += x
            p += p & -p

    def __add_mod(self, p:int, x:int):
        p+=1
        while( p<= self.__n):
            self.__data[p-1] += x
            self.__data[p-1] %= self.__mod
            p += p & -p

    def sum(self, l:int, r:int):
        assert (0 <= l) & (l <= r) & (r <= self.__n)
        if(self.__mod == 0):
            return self.__sum_mod0(r) - self.__sum_mod0(l)
        else:
            return self.__sum_mod(r) - self.__sum_mod(l)

    def __sum_mod0(self, r:int):
        s = 0
        while(r > 0):
            s += self.__data[r-1]
            r -= r & -r
        return s

    def __sum_mod(self, r:int):
        s = 0
        while(r > 0):
            s += self.__data[r-1]
            s %= self.__mod
            r -= r & -r
        return s

n = int(input())
a = list(map(int,input().split()))
mod = 998244353

## nCkのmodを求める関数
# テーブルを作る(前処理)
max_n = 2 * 10**5 + 100
fac, finv, inv = [0]*max_n, [0]*max_n, [0]*max_n

def comInit(max_n):
    fac[0] = fac[1] = 1
    finv[0] = finv[1] = 1
    inv[1] = 1

    for i in range(2,max_n):
      fac[i] = fac[i-1]* i% mod
      inv[i] = mod - inv[mod%i] * (mod // i) % mod
      finv[i] = finv[i-1] * inv[i] % mod

comInit(max_n)

# 二項係数の計算
def com(n,k):
    if(n < k):
        return 0
    if( (n<0) | (k < 0)):
        return 0
    return fac[n] * (finv[k] * finv[n-k] % mod) % mod

inverse = 0

a_ind = [[ai,i] for i,ai in enumerate(a)]
a_ind.sort(key= lambda x: -1*x[0]*10**6 - x[1])

d = {}
bit = fenwick_tree(n)
for ai,i in a_ind:
    inverse += bit.sum(0,i+1)
    bit.add(i,1)
    if(not ai in d):
        d[ai] = 1
    else:
        d[ai] += 1

inverse %= mod

inverse_all = n*(n-1)//2
for i in d.values():
    inverse_all -= i*(i-1)//2
inverse_all %= mod


combs = [1] * (n+1)
comb_l = [1] * (n+1)
comb_r = [1] * (n+2)
one = [0] * (n+1)
pair = [0] * (n+1)
for i in range(1,n+1):
    combs[i] = com(n,i)
    comb_l[i] = (comb_l[i-1] * combs[i])%mod
    one[i] = com(n-1,i-1)
    pair[i] = com(n-2,i-2)

for i in range(n,0,-1):
    comb_r[i] = (comb_r[i+1]*combs[i])%mod

ans = 0
ones = 0
for i in range(1,n+1):
    ans += ones * inverse_all * comb_r[i+1] * one[i]
    ans %= mod
    ones = (ones * combs[i] + comb_l[i-1] * one[i])%mod
    # print(i,ans)

    ans += pair[i] * inverse * comb_l[i-1] * comb_r[i+1]
    ans %= mod
    # print(i,ans)

print(ans)
0