結果
問題 | No.723 2つの数の和 |
ユーザー | umezo |
提出日時 | 2020-09-16 04:15:35 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 10,913 bytes |
コンパイル時間 | 2,650 ms |
コンパイル使用メモリ | 218,100 KB |
実行使用メモリ | 21,912 KB |
最終ジャッジ日時 | 2024-06-22 02:59:56 |
合計ジャッジ時間 | 5,467 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
21,264 KB |
testcase_01 | AC | 48 ms
21,344 KB |
testcase_02 | AC | 46 ms
21,204 KB |
testcase_03 | AC | 53 ms
21,612 KB |
testcase_04 | AC | 56 ms
21,720 KB |
testcase_05 | AC | 56 ms
21,700 KB |
testcase_06 | AC | 57 ms
21,588 KB |
testcase_07 | AC | 53 ms
21,436 KB |
testcase_08 | AC | 51 ms
21,336 KB |
testcase_09 | AC | 55 ms
21,656 KB |
testcase_10 | AC | 49 ms
21,408 KB |
testcase_11 | AC | 47 ms
21,212 KB |
testcase_12 | AC | 50 ms
21,360 KB |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 51 ms
21,328 KB |
testcase_21 | AC | 53 ms
21,284 KB |
testcase_22 | AC | 48 ms
21,288 KB |
testcase_23 | AC | 55 ms
21,740 KB |
testcase_24 | AC | 50 ms
21,416 KB |
ソースコード
#define rep(i, n) for (int i = 0; i < (int)(n); i++) #define ALL(v) v.begin(), v.end() typedef long long ll; #include <bits/stdc++.h> using namespace std; template<typename T,T MOD = 1000000007> struct mint{ static constexpr T mod = MOD; T v; mint():v(0){} mint(signed v):v(v){} mint(long long t){v=t%MOD;if(v<0) v+=MOD;} mint pow(long long k){ mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static mint add_identity(){return mint(0);} static mint mul_identity(){return mint(1);} mint inv(){return pow(MOD-2);} mint& operator+=(mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} mint& operator-=(mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} mint& operator*=(mint a){v=1LL*v*a.v%MOD;return *this;} mint& operator/=(mint a){return (*this)*=a.inv();} mint operator+(mint a) const{return mint(v)+=a;}; mint operator-(mint a) const{return mint(v)-=a;}; mint operator*(mint a) const{return mint(v)*=a;}; mint operator/(mint a) const{return mint(v)/=a;}; mint operator-() const{return v?mint(MOD-v):mint(v);} bool operator==(const mint a)const{return v==a.v;} bool operator!=(const mint a)const{return v!=a.v;} bool operator <(const mint a)const{return v <a.v;} }; template<typename T,T MOD> constexpr T mint<T, MOD>::mod; template<typename T,T MOD> ostream& operator<<(ostream &os,mint<T, MOD> m){os<<m.v;return os;} constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f,int n=-1){ if(n==-1) n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<int X> constexpr int NTT<X>::md; template<int X> constexpr int NTT<X>::rt; namespace FFT{ using dbl = double; struct num{ dbl x,y; num(){x=y=0;} num(dbl x,dbl y):x(x),y(y){} }; inline num operator+(num a,num b){ return num(a.x+b.x,a.y+b.y); } inline num operator-(num a,num b){ return num(a.x-b.x,a.y-b.y); } inline num operator*(num a,num b){ return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); } inline num conj(num a){ return num(a.x,-a.y); } int base=1; vector<num> rts={{0,0},{1,0}}; vector<int> rev={0,1}; const dbl PI=acosl(-1.0); void ensure_base(int nbase){ if(nbase<=base) return; rev.resize(1<<nbase); for(int i=0;i<(1<<nbase);i++) rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1)); rts.resize(1<<nbase); while(base<nbase){ dbl angle=2*PI/(1<<(base+1)); for(int i=1<<(base-1);i<(1<<base);i++){ rts[i<<1]=rts[i]; dbl angle_i=angle*(2*i+1-(1<<base)); rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i)); } base++; } } void fft(vector<num> &a,int n=-1){ if(n==-1) n=a.size(); assert((n&(n-1))==0); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; for(int i=0;i<n;i++) if(i<(rev[i]>>shift)) swap(a[i],a[rev[i]>>shift]); for(int k=1;k<n;k<<=1){ for(int i=0;i<n;i+=2*k){ for(int j=0;j<k;j++){ num z=a[i+j+k]*rts[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } vector<num> fa; vector<ll> multiply(vector<int> &a,vector<int> &b){ int need=a.size()+b.size()-1; int nbase=0; while((1<<nbase)<need) nbase++; ensure_base(nbase); int sz=1<<nbase; if(sz>(int)fa.size()) fa.resize(sz); for(int i=0;i<sz;i++){ int x=(i<(int)a.size()?a[i]:0); int y=(i<(int)b.size()?b[i]:0); fa[i]=num(x,y); } fft(fa,sz); num r(0,-0.25/sz); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r; if(i!=j) fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r; fa[i]=z; } fft(fa,sz); vector<ll> res(need); for(int i=0;i<need;i++) res[i]=fa[i].x+0.5; return res; } }; template<typename T> struct ArbitraryModConvolution{ using dbl=FFT::dbl; using num=FFT::num; vector<T> multiply(vector<T> as,vector<T> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; vector<num> fa(sz),fb(sz); for(int i=0;i<(int)as.size();i++) fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15); for(int i=0;i<(int)bs.size();i++) fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15); fft(fa,sz);fft(fb,sz); dbl ratio=0.25/sz; num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); num a1=(fa[i]+conj(fa[j])); num a2=(fa[i]-conj(fa[j]))*r2; num b1=(fb[i]+conj(fb[j]))*r3; num b2=(fb[i]-conj(fb[j]))*r4; if(i!=j){ num c1=(fa[j]+conj(fa[i])); num c2=(fa[j]-conj(fa[i]))*r2; num d1=(fb[j]+conj(fb[i]))*r3; num d2=(fb[j]-conj(fb[i]))*r4; fa[i]=c1*d1+c2*d2*r5; fb[i]=c1*d2+c2*d1; } fa[j]=a1*b1+a2*b2*r5; fb[j]=a1*b2+a2*b1; } fft(fa,sz);fft(fb,sz); vector<T> cs(need); using ll = long long; for(int i=0;i<need;i++){ ll aa=T(llround(fa[i].x)).v; ll bb=T(llround(fb[i].x)).v; ll cc=T(llround(fa[i].y)).v; cs[i]=T(aa+(bb<<15)+(cc<<30)); } return cs; } }; const int md = 998244353; inline int add(int a,int b){ a+=b; if(a>=md) a-=md; return a; } inline int mul(int a,int b){ return 1LL*a*b%md; } inline int pow(int a,int b){ int res=1; while(b){ if(b&1) res=mul(res,a); a=mul(a,a); b>>=1; } return res; } inline int sqrt(int a){ if(a==0) return 0; if(pow(a,(md-1)/2)!=1) return -1; int q=md-1,m=0; while(~q&1) q>>=1,m++; mt19937 mt; int z=mt()%md; while(pow(z,(md-1)/2)!=md-1) z=mt()%md; int c=pow(z,q),t=pow(a,q),r=pow(a,(q+1)/2); while(m>1){ if(pow(t,1<<(m-2))!=1) r=mul(r,c),t=mul(t,mul(c,c)); c=mul(c,c); m--; } return min(r,md-r); } template<typename T> struct FormalPowerSeries{ using Poly = vector<T>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,T(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,T(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } Poly mul(Poly as,T k){ for(auto &a:as) a*=k; return as; } // F(0) must not be 0 Poly inv(Poly as,int deg){ assert(as[0]!=T(0)); Poly rs({T(1)/as[0]}); int sz=1; while(sz<deg){ sz<<=1; Poly ts(min(sz,(int)as.size())); for(int i=0;i<(int)ts.size();i++) ts[i]=as[i]; rs=sub(add(rs,rs),mul(mul(rs,rs),ts)); rs.resize(sz); } return rs; } // not zero Poly div(Poly as,Poly bs){ while(as.back()==T(0)) as.pop_back(); while(bs.back()==T(0)) bs.pop_back(); if(bs.size()>as.size()) return Poly(); reverse(as.begin(),as.end()); reverse(bs.begin(),bs.end()); int need=as.size()-bs.size()+1; Poly ds=mul(as,inv(bs,need)); ds.resize(need); reverse(ds.begin(),ds.end()); return ds; } // F(0) must be 1 Poly sqrt(Poly as,int deg){ assert(as[0]==T(1)); int sz=1; T inv2=T(1)/T(2); Poly ss({T(1)}); while(sz<deg){ sz<<=1; Poly ts(min(sz,(int)as.size())); for(int i=0;i<(int)ts.size();i++) ts[i]=as[i]; ss=add(ss,mul(ts,inv(ss,sz))); ss.resize(sz); for(T &x:ss) x*=inv2; } return ss; } Poly diff(Poly as){ int n=as.size(); Poly res(n-1); for(int i=1;i<n;i++) res[i-1]=as[i]*T(i); return res; } Poly integral(Poly as){ int n=as.size(); Poly res(n+1); res[0]=T(0); for(int i=0;i<n;i++) res[i+1]=as[i]/T(i+1); return res; } Poly exp(Poly as,int deg){ Poly f({T(1)}),g({T(1)}); int sz=1; while(sz<deg){ g=sub(mul(g,T(2)),mul(f,mul(g,g))); g.resize(sz+1); Poly q=diff(as); q.resize(sz); Poly w=add(q,mul(g,sub(diff(f),mul(f,q)))); w.resize(2*sz); f=add(f,mul(f,sub(as,integral(w)))); f.resize(2*sz+1); sz<<=1; } return f; } // F(0) must be 1 Poly log(Poly as,int deg){ Poly rs=integral(mul(diff(as),inv(as,deg))); rs.resize(deg); return rs; } Poly partition(int n){ Poly rs(n+1); rs[0]=T(1); for(int k=1;k<=n;k++){ if(1LL*k*(3*k+1)/2<=n) rs[k*(3*k+1)/2]+=T(k%2?-1LL:1LL); if(1LL*k*(3*k-1)/2<=n) rs[k*(3*k-1)/2]+=T(k%2?-1LL:1LL); } return inv(rs,n+1); } }; int main(){ cin.tie(0); ios::sync_with_stdio(0); int n,x; cin>>n>>x; vector<int> A(n); for(int i=0;i<n;i++) cin>>A[i]; using M = mint<int>; ArbitraryModConvolution<M> arb; auto conv=[&](auto as,auto bs){return arb.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); const int sz=1<<17; vector<M> bs(sz,M(0)); rep(i,n){ bs[A[i]]+=1; } cout<<FPS.mul(bs,bs)[x]<<endl; return 0; }