結果

問題 No.1270 Range Arrange Query
ユーザー stoq
提出日時 2020-09-18 05:17:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 8,150 bytes
コンパイル時間 3,969 ms
コンパイル使用メモリ 233,224 KB
最終ジャッジ日時 2025-01-14 15:59:45
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 13 RE * 2
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘void solve()’:
main.cpp:382:18: warning: ‘len’ may be used uninitialized [-Wmaybe-uninitialized]
  382 |     ans[i] = inv + sg.query(0, n) * len;
      |              ~~~~^~~~~~~~~~~~~~~~~~~~~~
main.cpp:378:8: note: ‘len’ was declared here
  378 |     ll len;
      |        ^~~

ソースコード

diff #
プレゼンテーションモードにする

#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-9;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename T>
struct BIT
{
int n;
vector<T> dat;
BIT() {}
BIT(int n_) : n(n_), dat(n_, 0) {}
// 0-indexed
void add(int i, T x)
{
i++;
while (i <= n)
{
dat[i - 1] += x;
i += i & -i;
}
}
// [0, i)
T sum(int i)
{
T res = 0;
while (i > 0)
{
res += dat[i - 1];
i -= i & -i;
}
return res;
}
// 0-indexed
T get(int i) { return sum(i + 1) - sum(i); }
// [l, r)
T sum(int l, int r) { return sum(r) - sum(l); }
void display()
{
for (int i = 0; i < n; i++)
cerr << get(i) << " ";
cerr << "\n";
}
};
template <typename T, typename E>
struct SegmentTree
{
using F = function<T(T, T)>;
using G = function<T(T, E)>;
using H = function<E(E, E)>;
using P = function<E(E, int)>;
int n;
F f;
G g;
H h;
P p;
T ti;
E ei;
vector<T> dat;
vector<E> laz;
SegmentTree() {}
SegmentTree(
int n_, F f, G g, H h, T ti, E ei, P p = [](E a, int b) { return a; })
: f(f), g(g), h(h), ti(ti), ei(ei), p(p)
{
init(n_);
}
SegmentTree(
vector<T> &v, F f, G g, H h, T ti, E ei, P p = [](E a, int b) { return a; })
: f(f), g(g), h(h), ti(ti), ei(ei), p(p)
{
init(v.size());
build(v);
}
void init(int n_)
{
n = 1;
while (n < n_)
n *= 2;
dat.clear();
dat.resize(2 * n - 1, ti);
laz.clear();
laz.resize(2 * n - 1, ei);
}
void build(const vector<T> v)
{
for (int i = 0; i < v.size(); i++)
dat[i + n - 1] = v[i];
for (int i = n - 2; i >= 0; i--)
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void eval(int len, int k)
{
if (laz[k] == ei)
return;
if (k * 2 + 1 < n * 2 - 1)
{
laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
}
dat[k] = g(dat[k], p(laz[k], len));
laz[k] = ei;
}
T update(int a, int b, E x, int k, int l, int r)
{
eval(r - l, k);
if (r <= a || b <= l)
return dat[k];
if (a <= l && r <= b)
{
laz[k] = h(laz[k], x);
return g(dat[k], p(laz[k], r - l));
}
return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
update(a, b, x, k * 2 + 2, (l + r) / 2, r));
}
T update(int a, int b, E x) { return update(a, b, x, 0, 0, n); }
T query(int a, int b, int k, int l, int r)
{
eval(r - l, k);
if (r <= a || b <= l)
return ti;
if (a <= l && r <= b)
return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
T query(int a, int b) { return query(a, b, 0, 0, n); }
void disp()
{
rep(i, n) cerr << query(i, i + 1) << " ";
cerr << "\n";
}
};
auto my_min = [](ll a, ll b) { return min(a, b); };
int n;
vector<int> a;
BIT<ll> bit_l, bit_r;
SegmentTree<ll, ll> sg;
ll inv = 0;
struct Mo
{
vector<int> left, right, order;
vector<vector<bool>> v;
int width;
int nl, nr, ptr;
Mo(int n) : width((int)sqrt(n)), nl(0), nr(0), ptr(0), v(vector<vector<bool>>(n, vector<bool>(2, 0))) {}
void insert(int l, int r) /* [l, r) */
{
left.push_back(l);
right.push_back(r);
}
/* */
void build()
{
order.resize(left.size());
iota(begin(order), end(order), 0);
sort(begin(order), end(order), [&](int a, int b) {
if (left[a] / width != left[b] / width)
return left[a] < left[b];
return right[a] < right[b];
});
}
/* 1 , id */
void process(int &query_id, ll &len)
{
if (ptr == order.size())
{
query_id = -1;
return;
}
const auto id = order[ptr];
while (nl > left[id])
distribute(--nl, 0);
while (nr < right[id])
distribute(nr++, 1);
while (nl < left[id])
distribute(nl++, 0);
while (nr > right[id])
distribute(--nr, 1);
query_id = order[ptr++], len = right[id] - left[id];
}
inline void distribute(int idx, bool R)
{
v[idx][R].flip();
if (v[idx][R] ^ !R)
add(idx, R);
else
del(idx, R);
}
void add(int idx, bool R)
{
//cerr << "add\n";
//dbg(idx);
//dbg(R);
if (!R) // left
{
sg.update(0, a[idx], -1);
bit_l.add(a[idx], -1);
}
else // right
{
sg.update(a[idx] + 1, n, -1);
bit_r.add(a[idx], -1);
}
inv -= bit_l.sum(a[idx] + 1, n) + bit_r.sum(0, a[idx]);
//sg.disp();
}
void del(int idx, bool R)
{
//cerr << "del\n";
//dbg(idx);
//dbg(R);
if (!R) // left
{
sg.update(0, a[idx], 1);
bit_l.add(a[idx], 1);
}
else // right
{
sg.update(a[idx] + 1, n, 1);
bit_r.add(a[idx], 1);
}
inv += bit_l.sum(a[idx] + 1, n) + bit_r.sum(0, a[idx]);
//sg.disp();
}
};
void solve()
{
int q;
cin >> n >> q;
bit_l = BIT<ll>(n), bit_r = BIT<ll>(n);
vector<ll> sg_init(n, 0);
sg = SegmentTree<ll, ll>(sg_init, my_min, plus<ll>(), plus<ll>(), (ll)1e18, 0LL);
a.resize(n);
rep(i, n)
{
cin >> a[i];
a[i]--;
}
for (int i = n - 1; i >= 0; i--)
{
inv += bit_r.sum(0, a[i]);
bit_r.add(a[i], 1);
}
//dbg(inv);
Mo mo(n);
rep(qi, q)
{
int l, r;
cin >> l >> r;
l--;
mo.insert(l, r);
}
mo.build();
rep(i, n) sg.update(a[i] + 1, n, 1);
//sg.disp();
vector<int> ans(n);
rep(qi, q)
{
int i;
ll len;
mo.process(i, len);
//dbg(i);
//dbg(inv);
ans[i] = inv + sg.query(0, n) * len;
//sg.disp();
}
rep(i, q) cout << ans[i] << "\n";
}
int main()
{
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0