結果
問題 | No.654 Air E869120 |
ユーザー | s0j1san |
提出日時 | 2020-09-18 18:22:09 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 15,353 bytes |
コンパイル時間 | 2,001 ms |
コンパイル使用メモリ | 184,944 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-22 08:04:35 |
合計ジャッジ時間 | 3,122 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 6 ms
6,944 KB |
testcase_27 | AC | 6 ms
6,940 KB |
testcase_28 | WA | - |
testcase_29 | AC | 6 ms
6,940 KB |
testcase_30 | AC | 5 ms
6,940 KB |
testcase_31 | AC | 6 ms
6,944 KB |
testcase_32 | AC | 5 ms
6,940 KB |
testcase_33 | AC | 5 ms
6,940 KB |
testcase_34 | AC | 6 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 1 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <algorithm> #include <vector> namespace atcoder { namespace internal { template <class T> struct simple_queue { std::vector<T> payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal } // namespace atcoder #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap> struct mf_graph { public: mf_graph() : _n(0) {} mf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0}); return m; } struct edge { int from, to; Cap cap, flow; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap}; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result; for (int i = 0; i < m; i++) { result.push_back(get_edge(i)); } return result; } void change_edge(int i, Cap new_cap, Cap new_flow) { int m = int(pos.size()); assert(0 <= i && i < m); assert(0 <= new_flow && new_flow <= new_cap); auto& _e = g[pos[i].first][pos[i].second]; auto& _re = g[_e.to][_e.rev]; _e.cap = new_cap - new_flow; _re.cap = new_flow; } Cap flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } Cap flow(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); std::vector<int> level(_n), iter(_n); internal::simple_queue<int> que; auto bfs = [&]() { std::fill(level.begin(), level.end(), -1); level[s] = 0; que.clear(); que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (auto e : g[v]) { if (e.cap == 0 || level[e.to] >= 0) continue; level[e.to] = level[v] + 1; if (e.to == t) return; que.push(e.to); } } }; auto dfs = [&](auto self, int v, Cap up) { if (v == s) return up; Cap res = 0; int level_v = level[v]; for (int& i = iter[v]; i < int(g[v].size()); i++) { _edge& e = g[v][i]; if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue; Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap)); if (d <= 0) continue; g[v][i].cap += d; g[e.to][e.rev].cap -= d; res += d; if (res == up) break; } return res; }; Cap flow = 0; while (flow < flow_limit) { bfs(); if (level[t] == -1) break; std::fill(iter.begin(), iter.end(), 0); while (flow < flow_limit) { Cap f = dfs(dfs, t, flow_limit - flow); if (!f) break; flow += f; } } return flow; } std::vector<bool> min_cut(int s) { std::vector<bool> visited(_n); internal::simple_queue<int> que; que.push(s); while (!que.empty()) { int p = que.front(); que.pop(); visited[p] = true; for (auto e : g[p]) { if (e.cap && !visited[e.to]) { visited[e.to] = true; que.push(e.to); } } } return visited; } private: int _n; struct _edge { int to, rev; Cap cap; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder using namespace atcoder; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") //#include <boost/multiprecision/cpp_int.hpp> using namespace std; using dou =long double; string yes="yes"; string Yes="Yes"; string YES="YES"; string no="no"; string No="No"; string NO="NO"; template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } typedef long long ll; typedef pair<int,int> P; typedef pair<ll,ll> PL; const ll mod = 1000000007ll; //const ll mod = 10000000000ll; //const ll mod = 10000; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, const mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} #define rep(i, n) for(ll i = 0; i < (ll)(n); i++) #define brep(n) for(int bit=0;bit<(1<<n);bit++) #define bbrep(n) for(int bbit=0;bbit<(1<<n);bbit++) #define erep(i,container) for (auto &i : container) #define itrep(i,container) for (auto i : container) #define irep(i, n) for(ll i = n-1; i >= (ll)0ll; i--) #define rrep(i,m,n) for(ll i = m; i < (ll)(n); i++) #define reprep(i,j,h,w) rep(i,h)rep(j,w) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define VEC(type,name,n) std::vector<type> name(n);rep(i,n)std::cin >> name[i]; #define pb push_back #define pf push_front #define query int qq;std::cin >> qq;rep(qqq,qq) #define lb lower_bound #define ub upper_bound #define fi first #define se second #define itn int #define mp make_pair //#define sum(a) accumulate(all(a),0ll) #define keta fixed<<setprecision #define vout(a) erep(qxqxqx,a)std::cout << qxqxqx << ' ';std::cout << std::endl; #define vvector(name,typ,m,n,a)vector<vector<typ> > name(m,vector<typ> (n,a)) //#define vvector(name,typ,m,n)vector<vector<typ> > name(m,vector<typ> (n)) #define vvvector(name,t,l,m,n,a) vector<vector<vector<t> > > name(l, vector<vector<t> >(m, vector<t>(n,a))); #define vvvvector(name,t,k,l,m,n,a) vector<vector<vector<vector<t> > > > name(k,vector<vector<vector<t> > >(l, vector<vector<t> >(m, vector<t>(n,a)) )); #define case std::cout <<"Case #" <<qqq+1<<":" #define RES(a,i,j) a.resize(i);rep(ii,i)a[ii].resize(j); #define RESRES(a,i,j,k) a.resize(i);rep(ii,i)a[ii].resize(j);reprep(ii,jj,i,j){dp[ii][jj].resize(k)}; #define res resize #define as assign #define ffor for(;;) #define ppri(a,b) std::cout << a<<" "<<b << std::endl #define pppri(a,b,c) std::cout << a<<" "<<b <<" "<< c<<std::endl #define ppppri(a,b,c,d) std::cout << a<<" "<<b <<" "<< c<<' '<<d<<std::endl #define aall(x,n) (x).begin(),(x).begin()+(n) #define SUM(a) accumulate(all(a),0ll) #define stirng string #define gin(a,b) int a,b;std::cin >> a>>b;a--;b--; #define popcount __builtin_popcount #define permu(a) next_permutation(all(a)) //#define grid_input(a,type) int h,w;std::cin >> h>>w;vvector(a,type,h,w,0);reprep(i,j,h,w)std::cin >> a[i][j]; //typedef long long T; ll ceil(ll a,ll b){ return ((a+b-1)/b); } const int INF = 2'000'000'000; //const ll INF64 =3223372036854775807ll; //const ll INF64 = 9223372036854775807ll; const ll INF64 = 243'000'000'000'000'000; const ll MOD = 1000000007ll; //const ll MOD = 1000003ll; const ll OD = 1000000000000007ll; const dou pi=3.141592653589793; long long modpow(long long a, long long n) { //累乗の余剰 long long res = 1; while (n > 0) { if (n & 1) res = res * a % MOD; a = a * a % MOD; n >>= 1; } return res; } //メモ //ゲーム(Grundy数とか)の復習をする //群論の勉強をする? //ドツボにハマったら頑張って今までの思考をリセットする //学会のスライドを治す(木曜日まで) //周期性の実験をする //リスニング力をどうにかする //マンハッタン距離の問題は45度回転するとうまくいくことがあるらしいよ! //フローの勉強をする //とりあえずALCはちゃんと埋める int main(){ int n,m,d; std::cin >> n>>m>>d; std::vector<int> u(m),v(m),p(m),q(m),w(m); rep(i,m){ std::cin >> u[i]>>v[i]>>p[i]>>q[i]>>w[i]; u[i]--;v[i]--; } // std::cout << 123 << std::endl; mf_graph<ll> g(m+2); // std::cout << 123 << std::endl; rep(i,m){ //ppri(i,m); if(u[i]==0)g.add_edge(m,i,INF64); if(v[i]==n-1)g.add_edge(i,m+1,w[i]); } rep(i,m){ rep(j,m){ if(i==j)continue; if(p[j]-q[i]>=d&&v[i]==u[j])g.add_edge(i,j,min(w[i],w[j])); } } std::cout << g.flow(m,m+1) << std::endl; }