結果

問題 No.654 Air E869120
ユーザー s0j1sans0j1san
提出日時 2020-09-18 18:37:03
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 15,342 bytes
コンパイル時間 1,778 ms
コンパイル使用メモリ 184,456 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-22 08:05:43
合計ジャッジ時間 2,810 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 1 ms
6,944 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 9 ms
6,944 KB
testcase_11 AC 7 ms
6,940 KB
testcase_12 AC 7 ms
6,944 KB
testcase_13 AC 7 ms
6,940 KB
testcase_14 AC 7 ms
6,940 KB
testcase_15 AC 8 ms
6,940 KB
testcase_16 AC 7 ms
6,944 KB
testcase_17 WA -
testcase_18 AC 6 ms
6,944 KB
testcase_19 WA -
testcase_20 AC 6 ms
6,940 KB
testcase_21 AC 6 ms
6,944 KB
testcase_22 AC 6 ms
6,940 KB
testcase_23 AC 7 ms
6,940 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 6 ms
6,944 KB
testcase_27 AC 6 ms
6,940 KB
testcase_28 AC 6 ms
6,940 KB
testcase_29 AC 6 ms
6,944 KB
testcase_30 AC 5 ms
6,940 KB
testcase_31 AC 6 ms
6,940 KB
testcase_32 AC 6 ms
6,940 KB
testcase_33 AC 5 ms
6,944 KB
testcase_34 AC 6 ms
6,940 KB
testcase_35 AC 1 ms
6,944 KB
testcase_36 AC 1 ms
6,940 KB
testcase_37 AC 2 ms
6,940 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>



#include <algorithm>

#include <vector>

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    mf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) break;
            }
            return res;
        };

        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            while (flow < flow_limit) {
                Cap f = dfs(dfs, t, flow_limit - flow);
                if (!f) break;
                flow += f;
            }
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

using namespace atcoder;

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
//#include <boost/multiprecision/cpp_int.hpp>
using namespace std;


using dou =long double;
string yes="yes";
string Yes="Yes";
string YES="YES";
string no="no";
string No="No";
string NO="NO";

template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> PL;
const ll mod = 1000000007ll;
//const ll mod = 10000000000ll;
//const ll mod = 10000;

struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }

  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, const mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
#define rep(i, n)         for(ll i = 0; i < (ll)(n); i++)
#define brep(n)           for(int bit=0;bit<(1<<n);bit++)
#define bbrep(n)           for(int bbit=0;bbit<(1<<n);bbit++)
#define erep(i,container) for (auto &i : container)
#define itrep(i,container) for (auto i : container)
#define irep(i, n)        for(ll i = n-1; i >= (ll)0ll; i--)
#define rrep(i,m,n) for(ll i = m; i < (ll)(n); i++)
#define reprep(i,j,h,w) rep(i,h)rep(j,w)
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
#define VEC(type,name,n) std::vector<type> name(n);rep(i,n)std::cin >> name[i];
#define pb push_back
#define pf push_front
#define query int qq;std::cin >> qq;rep(qqq,qq)
#define lb lower_bound
#define ub upper_bound
#define fi first
#define se second
#define itn int
#define mp make_pair
//#define sum(a) accumulate(all(a),0ll)
#define keta fixed<<setprecision
#define vout(a) erep(qxqxqx,a)std::cout << qxqxqx << ' ';std::cout  << std::endl;
#define vvector(name,typ,m,n,a)vector<vector<typ> > name(m,vector<typ> (n,a))
//#define vvector(name,typ,m,n)vector<vector<typ> > name(m,vector<typ> (n))
#define vvvector(name,t,l,m,n,a) vector<vector<vector<t> > > name(l, vector<vector<t> >(m, vector<t>(n,a)));
#define vvvvector(name,t,k,l,m,n,a) vector<vector<vector<vector<t> > > > name(k,vector<vector<vector<t> > >(l, vector<vector<t> >(m, vector<t>(n,a)) ));
#define case std::cout <<"Case #" <<qqq+1<<":"
#define RES(a,i,j) a.resize(i);rep(ii,i)a[ii].resize(j);
#define RESRES(a,i,j,k) a.resize(i);rep(ii,i)a[ii].resize(j);reprep(ii,jj,i,j){dp[ii][jj].resize(k)};
#define res resize
#define as assign
#define ffor for(;;)
#define ppri(a,b) std::cout << a<<" "<<b << std::endl
#define pppri(a,b,c) std::cout << a<<" "<<b <<" "<< c<<std::endl
#define ppppri(a,b,c,d) std::cout << a<<" "<<b <<" "<< c<<' '<<d<<std::endl
#define aall(x,n) (x).begin(),(x).begin()+(n)
#define SUM(a) accumulate(all(a),0ll) 
#define stirng string
#define gin(a,b) int a,b;std::cin >> a>>b;a--;b--;
#define popcount __builtin_popcount
#define permu(a) next_permutation(all(a))
//#define grid_input(a,type) int h,w;std::cin >> h>>w;vvector(a,type,h,w,0);reprep(i,j,h,w)std::cin >> a[i][j];

//typedef long long T;
ll ceil(ll a,ll b){
    return ((a+b-1)/b);
}
const int INF = 2'000'000'000;
//const ll INF64 =3223372036854775807ll;
//const ll INF64 = 9223372036854775807ll;
const ll INF64 = 243'000'000'000'000'000;

const ll MOD = 1000000007ll;
//const ll MOD = 1000003ll;
const ll OD = 1000000000000007ll;
const dou pi=3.141592653589793;
long long modpow(long long a, long long n) { //累乗の余剰
    long long res = 1;
    while (n > 0) {
        if (n & 1) res = res * a % MOD;
        a = a * a % MOD;
        n >>= 1;
    }
    return res;
}


//メモ
//ゲーム(Grundy数とか)の復習をする
//群論の勉強をする?
//ドツボにハマったら頑張って今までの思考をリセットする
//学会のスライドを治す(木曜日まで)
//周期性の実験をする
//リスニング力をどうにかする
//マンハッタン距離の問題は45度回転するとうまくいくことがあるらしいよ!
//フローの勉強をする
//とりあえずALCはちゃんと埋める

int main(){
    int n,m,d;
    
    std::cin >> n>>m>>d;
    std::vector<int> u(m),v(m),p(m),q(m),w(m);
    
    rep(i,m){
        std::cin >> u[i]>>v[i]>>p[i]>>q[i]>>w[i];
        u[i]--;v[i]--;
    }
//    std::cout << 123 << std::endl;
    mf_graph<ll> g(m+2);
  //  std::cout << 123 << std::endl;
    rep(i,m){
        //ppri(i,m);
        if(u[i]==0)g.add_edge(m,i,w[i]);
        if(v[i]==n-1)g.add_edge(i,m+1,w[i]);
    }
    rep(i,m){
        rep(j,m){
            if(i==j)continue;
            if(p[j]-q[i]>=d&&v[i]==u[j])g.add_edge(i,j,w[j]);
        }
    }
    std::cout << g.flow(m,m+1) << std::endl;
}
0