結果
問題 | No.1234 典型RMQ |
ユーザー |
![]() |
提出日時 | 2020-09-18 21:40:28 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 83 ms / 2,000 ms |
コード長 | 22,935 bytes |
コンパイル時間 | 4,101 ms |
コンパイル使用メモリ | 261,328 KB |
最終ジャッジ日時 | 2025-01-14 16:40:32 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
#line 1 "other/b.cpp"#include <bits/extc++.h>#line 7 "Library/alias.hpp"namespace workspace {constexpr char eol = '\n';using namespace std;using i32 = int_least32_t;using i64 = int_least64_t;using i128 = __int128_t;using u32 = uint_least32_t;using u64 = uint_least64_t;using u128 = __uint128_t;template <class T, class Comp = less<T>>using priority_queue = std::priority_queue<T, vector<T>, Comp>;template <class T> using stack = std::stack<T, vector<T>>;constexpr i32 clz32(const u32 &n) noexcept { return __builtin_clz(n); }constexpr i32 clz64(const u64 &n) noexcept { return __builtin_clzll(n); }constexpr i32 ctz(const u64 &n) noexcept { return __builtin_ctzll(n); }constexpr i32 popcnt(const u64 &n) noexcept { return __builtin_popcountll(n); }} // namespace workspace#line 5 "Library/config.hpp"namespace config {const auto start_time{std::chrono::system_clock::now()};int64_t elapsed() {using namespace std::chrono;const auto end_time{system_clock::now()};return duration_cast<milliseconds>(end_time - start_time).count();}__attribute__((constructor)) void setup() {using namespace std;ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);#ifdef _buffer_checkatexit([] {char bufc;if (cin >> bufc)cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";});#endif}unsigned cases(void), caseid = 1;template <class C> void main() {for (const unsigned total = cases(); caseid <= total; ++caseid) C();}} // namespace config#line 2 "Library/option.hpp"#ifdef ONLINE_JUDGE#pragma GCC optimize("O3")#pragma GCC target("avx,avx2")#pragma GCC optimize("unroll-loops")#endif#line 5 "Library/utils/binary_search.hpp"namespace workspace {// binary search on discrete range.template <class iter_type, class pred_type>std::enable_if_t<std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,iter_type>binary_search(iter_type ok, iter_type ng, pred_type pred) {assert(ok != ng);__int128_t dist(ng - ok);while (dist > 1 || dist < -1) {iter_type mid(ok + dist / 2);if (pred(mid))ok = mid, dist -= dist / 2;elseng = mid, dist /= 2;}return ok;}// parallel binary search on discrete range.template <class iter_type, class pred_type>std::enable_if_t<std::is_convertible_v<std::invoke_result_t<pred_type, std::vector<iter_type>>,std::vector<bool>>,std::vector<iter_type>>binary_search(std::vector<std::pair<iter_type, iter_type>> ends,pred_type pred) {std::vector<iter_type> mids(ends.size());for (;;) {bool all_found = true;for (size_t i{}; i != ends.size(); ++i) {auto [ok, ng] = ends[i];iter_type mid(ok + (ng - ok) / 2);if (mids[i] != mid) {all_found = false;mids[i] = mid;}}if (all_found) break;auto res = pred(mids);for (size_t i{}; i != ends.size(); ++i) {(res[i] ? ends[i].first : ends[i].second) = mids[i];}}return mids;}// binary search on real numbers.template <class real_type, class pred_type>std::enable_if_t<std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,real_type>binary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {assert(ok != ng);while (ok + eps < ng || ng + eps < ok) {real_type mid{(ok + ng) / 2};(pred(mid) ? ok : ng) = mid;}return ok;}// parallel binary search on real numbers.template <class real_type, class pred_type>std::enable_if_t<std::is_convertible_v<std::invoke_result_t<pred_type, std::vector<real_type>>,std::vector<bool>>,std::vector<real_type>>binary_search(std::vector<std::pair<real_type, real_type>> ends,const real_type eps, pred_type pred) {std::vector<real_type> mids(ends.size());for (;;) {bool all_found = true;for (size_t i{}; i != ends.size(); ++i) {auto [ok, ng] = ends[i];if (ok + eps < ng || ng + eps < ok) {all_found = false;mids[i] = (ok + ng) / 2;}}if (all_found) break;auto res = pred(mids);for (size_t i{}; i != ends.size(); ++i) {(res[i] ? ends[i].first : ends[i].second) = mids[i];}}return mids;}} // namespace workspace#line 3 "Library/utils/casefmt.hpp"namespace workspace {std::ostream &casefmt(std::ostream& os) { return os << "Case #" << config::caseid << ": "; }} // namespace workspace#line 3 "Library/utils/chval.hpp"namespace workspace {template <class T, class Comp = std::less<T>> bool chle(T &x, const T &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; }template <class T, class Comp = std::less<T>> bool chge(T &x, const T &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; }} // namespace workspace#line 4 "Library/utils/coordinate_compression.hpp"template <class T>class coordinate_compression{std::vector<T> uniquely;std::vector<size_t> compressed;public:coordinate_compression(const std::vector<T> &raw) : uniquely(raw), compressed(raw.size()){std::sort(uniquely.begin(), uniquely.end());uniquely.erase(std::unique(uniquely.begin(), uniquely.end()), uniquely.end());for(size_t i = 0; i != size(); ++i)compressed[i] = std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) - uniquely.begin();}size_t operator[](const size_t idx) const{assert(idx < size());return compressed[idx];}size_t size() const { return compressed.size(); }size_t count() const { return uniquely.size(); }T value_of(const size_t ord) const{assert(ord < count());return uniquely[ord];}size_t order_of(const T &val) const { return std::lower_bound(uniquely.begin(), uniquely.end(), val) - uniquely.begin(); }std::vector<size_t>::iterator begin() { return compressed.begin(); }std::vector<size_t>::iterator end() { return compressed.end(); }std::vector<size_t>::reverse_iterator rbegin() { return compressed.rbegin(); }std::vector<size_t>::reverse_iterator rend() { return compressed.rend(); }};#line 3 "Library/utils/fixed_point.hpp"namespace workspace {// specify the return type of lambda.template <class lambda_type>class fixed_point{lambda_type func;public:fixed_point(lambda_type &&f) : func(std::move(f)) {}template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }};} // namespace workspace#line 6 "Library/utils/hash.hpp"#line 3 "Library/utils/sfinae.hpp"#include <type_traits>template <class type, template <class> class trait>using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;template <class Container>using element_type = typename std::decay<decltype(*std::begin(std::declval<Container&>()))>::type;template <class T, class = int> struct mapped_of {using type = element_type<T>;};template <class T>struct mapped_of<T,typename std::pair<int, typename T::mapped_type>::first_type> {using type = typename T::mapped_type;};template <class T> using mapped_type = typename mapped_of<T>::type;template <class T, class = void> struct is_integral_ext : std::false_type {};template <class T>struct is_integral_ext<T, typename std::enable_if<std::is_integral<T>::value>::type>: std::true_type {};template <> struct is_integral_ext<__int128_t> : std::true_type {};template <> struct is_integral_ext<__uint128_t> : std::true_type {};#if __cplusplus >= 201402template <class T>constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;#endiftemplate <typename T, typename = void> struct multiplicable_uint {using type = uint_least32_t;};template <typename T>struct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {using type = uint_least64_t;};template <typename T>struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {using type = __uint128_t;};#line 8 "Library/utils/hash.hpp"namespace workspace {template <class T, class = void> struct hash : std::hash<T> {};template <class Unique_bits_type>struct hash<Unique_bits_type,enable_if_trait_type<Unique_bits_type,std::has_unique_object_representations>> {size_t operator()(uint64_t x) const {static const uint64_t m = std::random_device{}();x ^= x >> 23;x ^= m;x ^= x >> 47;return x - (x >> 32);}};template <class Key> size_t hash_combine(const size_t &seed, const Key &key) {return seed ^(hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);}template <class T1, class T2> struct hash<std::pair<T1, T2>> {size_t operator()(const std::pair<T1, T2> &pair) const {return hash_combine(hash<T1>()(pair.first), pair.second);}};template <class... T> class hash<std::tuple<T...>> {template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>struct tuple_hash {static uint64_t apply(const Tuple &t) {return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),std::get<index>(t));}};template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {static uint64_t apply(const Tuple &t) { return 0; }};public:uint64_t operator()(const std::tuple<T...> &t) const {return tuple_hash<std::tuple<T...>>::apply(t);}};template <class hash_table> struct hash_table_wrapper : hash_table {using key_type = typename hash_table::key_type;size_t count(const key_type &key) const {return hash_table::find(key) != hash_table::end();}template <class... Args> auto emplace(Args &&... args) {return hash_table::insert(typename hash_table::value_type(args...));}};template <class Key, class Mapped = __gnu_pbds::null_type>using cc_hash_table =hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;template <class Key, class Mapped = __gnu_pbds::null_type>using gp_hash_table =hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;template <class Key, class Mapped>using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;} // namespace workspace#line 3 "Library/utils/make_vector.hpp"namespace workspace {template <typename T, size_t N>constexpr auto make_vector(size_t* sizes, T const& init = T()) {if constexpr (N)return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));elsereturn init;}template <typename T, size_t N>constexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {return make_vector<T, N>((size_t*)sizes, init);}} // namespace workspace#line 3 "Library/utils/random_number_generator.hpp"template <typename num_t>class random_number_generator{template <bool is_int, class = void>struct unif_t{std::uniform_int_distribution<num_t> unif;unif_t(num_t lower, num_t upper) : unif(lower, upper) {}num_t operator()(std::mt19937 &engine) { return unif(engine); }};template <class void_t>struct unif_t<false, void_t>{std::uniform_real_distribution<num_t> unif;unif_t(num_t lower, num_t upper) : unif(lower, upper) {}num_t operator()(std::mt19937 &engine) { return unif(engine); }};unif_t<std::is_integral<num_t>::value> unif;std::mt19937 engine;public:// generate random number in [lower, upper].random_number_generator(num_t lower = std::numeric_limits<num_t>::min(), num_t upper = std::numeric_limits<num_t>::max()) : unif(lower, upper),engine(std::random_device{}()) {}num_t operator()() { return unif(engine); }}; // class random_number_generator#line 3 "Library/utils/read.hpp"namespace workspace {// read with std::cin.template <class T = void>struct read{typename std::remove_const<T>::type value;template <class... types>read(types... args) : value(args...) { std::cin >> value; }operator T() const { return value; }};template <>struct read<void>{template <class T>operator T() const { T value; std::cin >> value; return value; }};} // namespace workspace#line 4 "Library/utils/stream.hpp"#line 6 "Library/utils/stream.hpp"namespace std {template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {return is >> p.first >> p.second;}template <class T, class U>ostream &operator<<(ostream &os, const pair<T, U> &p) {return os << p.first << ' ' << p.second;}template <class tuple_t, size_t index> struct tuple_is {static istream &apply(istream &is, tuple_t &t) {tuple_is<tuple_t, index - 1>::apply(is, t);return is >> get<index>(t);}};template <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {static istream &apply(istream &is, tuple_t &t) { return is; }};template <class... T> istream &operator>>(istream &is, tuple<T...> &t) {return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,t);}template <class tuple_t, size_t index> struct tuple_os {static ostream &apply(ostream &os, const tuple_t &t) {tuple_os<tuple_t, index - 1>::apply(os, t);return os << ' ' << get<index>(t);}};template <class tuple_t> struct tuple_os<tuple_t, 0> {static ostream &apply(ostream &os, const tuple_t &t) {return os << get<0>(t);}};template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {static ostream &apply(ostream &os, const tuple_t &t) { return os; }};template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,t);}template <class Container, typename Value = element_type<Container>>typename enable_if<!is_same<typename decay<Container>::type, string>::value &&!is_same<typename decay<Container>::type, char *>::value,istream &>::typeoperator>>(istream &is, Container &cont) {for (auto &&e : cont) is >> e;return is;}template <class Container, typename Value = element_type<Container>>typename enable_if<!is_same<typename decay<Container>::type, string>::value &&!is_same<typename decay<Container>::type, char *>::value,ostream &>::typeoperator<<(ostream &os, const Container &cont) {bool head = true;for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;return os;}} // namespace std#line 4 "Library/utils/trinary_search.hpp"// trinary search on discrete range.template <class iter_type, class comp_type>iter_type trinary(iter_type first, iter_type last, comp_type comp){assert(first < last);intmax_t dist(last - first);while(dist > 2){iter_type left(first + dist / 3), right(first + dist * 2 / 3);if(comp(left, right)) last = right, dist = dist * 2 / 3;else first = left, dist -= dist / 3;}if(dist > 1 && comp(first + 1, first)) ++first;return first;}// trinary search on real numbers.template <class comp_type>long double trinary(long double first, long double last, const long double eps, comp_type comp){assert(first < last);while(last - first > eps){long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};if(comp(left, right)) last = right;else first = left;}return first;}#line 2 "Library/utils/wrapper.hpp"template <class Container> class reversed {Container &ref, copy;public:reversed(Container &ref) : ref(ref) {}reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}auto begin() const { return ref.rbegin(); }auto end() const { return ref.rend(); }};#line 7 "other/b.cpp"namespace workspace {struct solver;} // namespace workspaceint main() { config::main<workspace::solver>(); }unsigned config::cases() {// return -1; // unspecified// int t; std::cin >> t; return t; // givenreturn 1;}#line 4 "Library/data_structure/segment_tree/lazy.hpp"#line 6 "Library/data_structure/segment_tree/lazy.hpp"template <class Monoid, class Endomorphism,template <class...> class Container_tmpl = std::vector>class lazy_segment_tree {size_t size_orig, height, size_ext;Container_tmpl<Monoid> data;Container_tmpl<Endomorphism> lazy;static_assert(std::is_same<Monoid, decltype(Monoid{} + Monoid{})>::value,"\'Monoid\' has no proper binary operator+.");static_assert(std::is_same<Endomorphism,decltype(Endomorphism{} * Endomorphism{})>::value,"\'Endomorphism\' has no proper binary operator*.");static_assert(std::is_same<Monoid, decltype(Monoid{} * Endomorphism{})>::value,"\'Endomorphism\' is not applicable to \'Monoid\'.");void pull(const size_t &node) {data[node] = data[node << 1] + data[node << 1 | 1];}void apply(const size_t &node, const Endomorphism &endo) {data[node] = data[node] * endo;if (node < size_ext) lazy[node] = lazy[node] * endo;}void push(const size_t &node) {if (node >= size_ext) return;apply(node << 1, lazy[node]);apply(node << 1 | 1, lazy[node]);lazy[node] = Endomorphism{};}template <class Pred>size_t left_search_subtree(size_t node, Pred pred, Monoid mono) {assert(node);while (node < size_ext) {push(node);const Monoid &tmp = data[(node <<= 1) | 1] + mono;if (pred(tmp))mono = tmp;else++node;}return ++node -= size_ext;}template <class Pred>size_t right_search_subtree(size_t node, Pred pred, Monoid mono) {assert(node);while (node < size_ext) {push(node);const Monoid &tmp = mono + data[node <<= 1];if (pred(tmp)) ++node, mono = tmp;}return (node -= size_ext) < size_orig ? node : size_orig;}public:lazy_segment_tree(const size_t n = 0): size_orig{n},height(n > 1 ? 32 - __builtin_clz(n - 1) : 0),size_ext{1u << height},data(size_ext << 1),lazy(size_ext) {}lazy_segment_tree(const size_t &n, const Monoid &init): lazy_segment_tree(n) {std::fill(std::next(std::begin(data), size_ext), std::end(data), init);for (size_t i{size_ext}; --i;) pull(i);}template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type>lazy_segment_tree(iter_type first, iter_type last): size_orig(std::distance(first, last)),height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),size_ext{1u << height},data(size_ext << 1),lazy(size_ext) {static_assert(std::is_constructible<Monoid, value_type>::value,"Monoid(iter_type::value_type) is not constructible.");for (auto iter{std::next(std::begin(data), size_ext)};iter != std::end(data) && first != last; ++iter, ++first)*iter = Monoid(*first);for (size_t i{size_ext}; --i;) pull(i);}template <class Container, typename = typename Container::value_type>lazy_segment_tree(const Container &cont): lazy_segment_tree(std::begin(cont), std::end(cont)) {}size_t size() const { return size_orig; }size_t capacity() const { return size_ext; }Monoid operator[](const size_t &index) { return fold(index, index + 1); }void update(const size_t &index, const Endomorphism &endo) {update(index, index + 1, endo);}void update(size_t first, size_t last, const Endomorphism &endo) {assert(last <= size_orig);if (first >= last) return;first += size_ext, last += size_ext - 1;for (size_t i = height; i; --i) push(first >> i), push(last >> i);for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {if (l < r) {if (l & 1) apply(l++, endo);if (r & 1) apply(--r, endo);}if (first >>= 1, last >>= 1) {pull(first), pull(last);}}}Monoid fold() { return fold(0, size_orig); }Monoid fold(size_t first, size_t last) {assert(last <= size_orig);if (first >= last) return Monoid{};first += size_ext, last += size_ext - 1;Monoid left_val{}, right_val{};for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {if (l < r) {if (l & 1) left_val = left_val + data[l++];if (r & 1) right_val = data[--r] + right_val;}if (first >>= 1, last >>= 1) {left_val = left_val * lazy[first];right_val = right_val * lazy[last];}}return left_val + right_val;}template <class Pred> size_t left_search(size_t right, Pred pred) {assert(right <= size_orig);right += size_ext - 1;for (size_t i{height}; i; --i) push(right >> i);++right;Monoid mono{};for (size_t left{size_ext}; left != right; left >>= 1, right >>= 1) {if ((left & 1) != (right & 1)) {const Monoid &tmp = data[--right] + mono;if (!pred(tmp)) return left_search_subtree(right, pred, mono);mono = tmp;}}return 0;}template <class Pred> size_t right_search(size_t left, Pred pred) {assert(left <= size_orig);left += size_ext;for (size_t i{height}; i; --i) push(left >> i);Monoid mono{};for (size_t right{size_ext << 1}; left != right; left >>= 1, right >>= 1) {if ((left & 1) != (right & 1)) {const Monoid &tmp = mono + data[left];if (!pred(tmp)) return right_search_subtree(left, pred, mono);mono = tmp;++left;}}return size_orig;}}; // class lazy_segment_tree#line 18 "other/b.cpp"struct workspace::solver {solver() {// start here!const i64 inf = 1e18;struct endo {i64 value = 0;endo operator*(endo rhs) { return {value + rhs.value}; }};struct mono {i64 value = inf;mono operator*(endo rhs) { return {value + rhs.value}; }mono operator+(mono rhs) { return {min(value, rhs.value)}; }};int n;cin >> n;lazy_segment_tree<mono, endo> laz;{vector<mono> init(n);for (auto i = 0; i < n; ++i) {i64 a;cin >> a;init[i] = {a};}laz = init;}int q;cin >> q;while (q--) {int k, l, r, c;cin >> k >> l >> r >> c;--l;k--;if (k) {cout << laz.fold(l, r).value << eol;} else {laz.update(l, r, {c});}}}};