結果

問題 No.1234 典型RMQ
ユーザー jell
提出日時 2020-09-18 21:40:28
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 83 ms / 2,000 ms
コード長 22,935 bytes
コンパイル時間 4,101 ms
コンパイル使用メモリ 261,328 KB
最終ジャッジ日時 2025-01-14 16:40:32
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "other/b.cpp"
#include <bits/extc++.h>
#line 7 "Library/alias.hpp"
namespace workspace {
constexpr char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using i64 = int_least64_t;
using i128 = __int128_t;
using u32 = uint_least32_t;
using u64 = uint_least64_t;
using u128 = __uint128_t;
template <class T, class Comp = less<T>>
using priority_queue = std::priority_queue<T, vector<T>, Comp>;
template <class T> using stack = std::stack<T, vector<T>>;
constexpr i32 clz32(const u32 &n) noexcept { return __builtin_clz(n); }
constexpr i32 clz64(const u64 &n) noexcept { return __builtin_clzll(n); }
constexpr i32 ctz(const u64 &n) noexcept { return __builtin_ctzll(n); }
constexpr i32 popcnt(const u64 &n) noexcept { return __builtin_popcountll(n); }
} // namespace workspace
#line 5 "Library/config.hpp"
namespace config {
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed() {
using namespace std::chrono;
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup() {
using namespace std;
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
#ifdef _buffer_check
atexit([] {
char bufc;
if (cin >> bufc)
cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
unsigned cases(void), caseid = 1;
template <class C> void main() {
for (const unsigned total = cases(); caseid <= total; ++caseid) C();
}
} // namespace config
#line 2 "Library/option.hpp"
#ifdef ONLINE_JUDGE
#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2")
#pragma GCC optimize("unroll-loops")
#endif
#line 5 "Library/utils/binary_search.hpp"
namespace workspace {
// binary search on discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>,
iter_type>
binary_search(iter_type ok, iter_type ng, pred_type pred) {
assert(ok != ng);
__int128_t dist(ng - ok);
while (dist > 1 || dist < -1) {
iter_type mid(ok + dist / 2);
if (pred(mid))
ok = mid, dist -= dist / 2;
else
ng = mid, dist /= 2;
}
return ok;
}
// parallel binary search on discrete range.
template <class iter_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<iter_type>>,
std::vector<bool>>,
std::vector<iter_type>>
binary_search(std::vector<std::pair<iter_type, iter_type>> ends,
pred_type pred) {
std::vector<iter_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
iter_type mid(ok + (ng - ok) / 2);
if (mids[i] != mid) {
all_found = false;
mids[i] = mid;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
// binary search on real numbers.
template <class real_type, class pred_type>
std::enable_if_t<
std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>,
real_type>
binary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) {
assert(ok != ng);
while (ok + eps < ng || ng + eps < ok) {
real_type mid{(ok + ng) / 2};
(pred(mid) ? ok : ng) = mid;
}
return ok;
}
// parallel binary search on real numbers.
template <class real_type, class pred_type>
std::enable_if_t<std::is_convertible_v<
std::invoke_result_t<pred_type, std::vector<real_type>>,
std::vector<bool>>,
std::vector<real_type>>
binary_search(std::vector<std::pair<real_type, real_type>> ends,
const real_type eps, pred_type pred) {
std::vector<real_type> mids(ends.size());
for (;;) {
bool all_found = true;
for (size_t i{}; i != ends.size(); ++i) {
auto [ok, ng] = ends[i];
if (ok + eps < ng || ng + eps < ok) {
all_found = false;
mids[i] = (ok + ng) / 2;
}
}
if (all_found) break;
auto res = pred(mids);
for (size_t i{}; i != ends.size(); ++i) {
(res[i] ? ends[i].first : ends[i].second) = mids[i];
}
}
return mids;
}
} // namespace workspace
#line 3 "Library/utils/casefmt.hpp"
namespace workspace {
std::ostream &casefmt(std::ostream& os) { return os << "Case #" << config::caseid << ": "; }
} // namespace workspace
#line 3 "Library/utils/chval.hpp"
namespace workspace {
template <class T, class Comp = std::less<T>> bool chle(T &x, const T &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; }
template <class T, class Comp = std::less<T>> bool chge(T &x, const T &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; }
} // namespace workspace
#line 4 "Library/utils/coordinate_compression.hpp"
template <class T>
class coordinate_compression
{
std::vector<T> uniquely;
std::vector<size_t> compressed;
public:
coordinate_compression(const std::vector<T> &raw) : uniquely(raw), compressed(raw.size())
{
std::sort(uniquely.begin(), uniquely.end());
uniquely.erase(std::unique(uniquely.begin(), uniquely.end()), uniquely.end());
for(size_t i = 0; i != size(); ++i)
compressed[i] = std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) - uniquely.begin();
}
size_t operator[](const size_t idx) const
{
assert(idx < size());
return compressed[idx];
}
size_t size() const { return compressed.size(); }
size_t count() const { return uniquely.size(); }
T value_of(const size_t ord) const
{
assert(ord < count());
return uniquely[ord];
}
size_t order_of(const T &val) const { return std::lower_bound(uniquely.begin(), uniquely.end(), val) - uniquely.begin(); }
std::vector<size_t>::iterator begin() { return compressed.begin(); }
std::vector<size_t>::iterator end() { return compressed.end(); }
std::vector<size_t>::reverse_iterator rbegin() { return compressed.rbegin(); }
std::vector<size_t>::reverse_iterator rend() { return compressed.rend(); }
};
#line 3 "Library/utils/fixed_point.hpp"
namespace workspace {
// specify the return type of lambda.
template <class lambda_type>
class fixed_point
{
lambda_type func;
public:
fixed_point(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
} // namespace workspace
#line 6 "Library/utils/hash.hpp"
#line 3 "Library/utils/sfinae.hpp"
#include <type_traits>
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
template <class Container>
using element_type = typename std::decay<decltype(
*std::begin(std::declval<Container&>()))>::type;
template <class T, class = int> struct mapped_of {
using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
typename std::pair<int, typename T::mapped_type>::first_type> {
using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;
template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
T, typename std::enable_if<std::is_integral<T>::value>::type>
: std::true_type {};
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#if __cplusplus >= 201402
template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;
#endif
template <typename T, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> {
using type = uint_least64_t;
};
template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
using type = __uint128_t;
};
#line 8 "Library/utils/hash.hpp"
namespace workspace {
template <class T, class = void> struct hash : std::hash<T> {};
template <class Unique_bits_type>
struct hash<Unique_bits_type,
enable_if_trait_type<Unique_bits_type,
std::has_unique_object_representations>> {
size_t operator()(uint64_t x) const {
static const uint64_t m = std::random_device{}();
x ^= x >> 23;
x ^= m;
x ^= x >> 47;
return x - (x >> 32);
}
};
template <class Key> size_t hash_combine(const size_t &seed, const Key &key) {
return seed ^
(hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */);
}
template <class T1, class T2> struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2> &pair) const {
return hash_combine(hash<T1>()(pair.first), pair.second);
}
};
template <class... T> class hash<std::tuple<T...>> {
template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1>
struct tuple_hash {
static uint64_t apply(const Tuple &t) {
return hash_combine(tuple_hash<Tuple, index - 1>::apply(t),
std::get<index>(t));
}
};
template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> {
static uint64_t apply(const Tuple &t) { return 0; }
};
public:
uint64_t operator()(const std::tuple<T...> &t) const {
return tuple_hash<std::tuple<T...>>::apply(t);
}
};
template <class hash_table> struct hash_table_wrapper : hash_table {
using key_type = typename hash_table::key_type;
size_t count(const key_type &key) const {
return hash_table::find(key) != hash_table::end();
}
template <class... Args> auto emplace(Args &&... args) {
return hash_table::insert(typename hash_table::value_type(args...));
}
};
template <class Key, class Mapped = __gnu_pbds::null_type>
using cc_hash_table =
hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped = __gnu_pbds::null_type>
using gp_hash_table =
hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>;
template <class Key, class Mapped>
using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>;
template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>;
} // namespace workspace
#line 3 "Library/utils/make_vector.hpp"
namespace workspace {
template <typename T, size_t N>
constexpr auto make_vector(size_t* sizes, T const& init = T()) {
if constexpr (N)
return std::vector(*sizes, make_vector<T, N - 1>(std::next(sizes), init));
else
return init;
}
template <typename T, size_t N>
constexpr auto make_vector(const size_t (&sizes)[N], T const& init = T()) {
return make_vector<T, N>((size_t*)sizes, init);
}
} // namespace workspace
#line 3 "Library/utils/random_number_generator.hpp"
template <typename num_t>
class random_number_generator
{
template <bool is_int, class = void>
struct unif_t
{
std::uniform_int_distribution<num_t> unif;
unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
num_t operator()(std::mt19937 &engine) { return unif(engine); }
};
template <class void_t>
struct unif_t<false, void_t>
{
std::uniform_real_distribution<num_t> unif;
unif_t(num_t lower, num_t upper) : unif(lower, upper) {}
num_t operator()(std::mt19937 &engine) { return unif(engine); }
};
unif_t<std::is_integral<num_t>::value> unif;
std::mt19937 engine;
public:
// generate random number in [lower, upper].
random_number_generator(num_t lower = std::numeric_limits<num_t>::min(), num_t upper = std::numeric_limits<num_t>::max()) : unif(lower, upper),
        engine(std::random_device{}()) {}
num_t operator()() { return unif(engine); }
}; // class random_number_generator
#line 3 "Library/utils/read.hpp"
namespace workspace {
// read with std::cin.
template <class T = void>
struct read
{
typename std::remove_const<T>::type value;
template <class... types>
read(types... args) : value(args...) { std::cin >> value; }
operator T() const { return value; }
};
template <>
struct read<void>
{
template <class T>
operator T() const { T value; std::cin >> value; return value; }
};
} // namespace workspace
#line 4 "Library/utils/stream.hpp"
#line 6 "Library/utils/stream.hpp"
namespace std {
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
return os << p.first << ' ' << p.second;
}
template <class tuple_t, size_t index> struct tuple_is {
static istream &apply(istream &is, tuple_t &t) {
tuple_is<tuple_t, index - 1>::apply(is, t);
return is >> get<index>(t);
}
};
template <class tuple_t> struct tuple_is<tuple_t, SIZE_MAX> {
static istream &apply(istream &is, tuple_t &t) { return is; }
};
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) {
return tuple_is<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is,
t);
}
template <class tuple_t, size_t index> struct tuple_os {
static ostream &apply(ostream &os, const tuple_t &t) {
tuple_os<tuple_t, index - 1>::apply(os, t);
return os << ' ' << get<index>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, 0> {
static ostream &apply(ostream &os, const tuple_t &t) {
return os << get<0>(t);
}
};
template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> {
static ostream &apply(ostream &os, const tuple_t &t) { return os; }
};
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) {
return tuple_os<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os,
t);
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
istream &>::type
operator>>(istream &is, Container &cont) {
for (auto &&e : cont) is >> e;
return is;
}
template <class Container, typename Value = element_type<Container>>
typename enable_if<!is_same<typename decay<Container>::type, string>::value &&
!is_same<typename decay<Container>::type, char *>::value,
ostream &>::type
operator<<(ostream &os, const Container &cont) {
bool head = true;
for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e;
return os;
}
} // namespace std
#line 4 "Library/utils/trinary_search.hpp"
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type first, iter_type last, comp_type comp)
{
assert(first < last);
intmax_t dist(last - first);
while(dist > 2)
{
iter_type left(first + dist / 3), right(first + dist * 2 / 3);
if(comp(left, right)) last = right, dist = dist * 2 / 3;
else first = left, dist -= dist / 3;
}
if(dist > 1 && comp(first + 1, first)) ++first;
return first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double first, long double last, const long double eps, comp_type comp)
{
assert(first < last);
while(last - first > eps)
{
long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3};
if(comp(left, right)) last = right;
else first = left;
}
return first;
}
#line 2 "Library/utils/wrapper.hpp"
template <class Container> class reversed {
Container &ref, copy;
public:
reversed(Container &ref) : ref(ref) {}
reversed(Container &&ref = Container()) : ref(copy), copy(ref) {}
auto begin() const { return ref.rbegin(); }
auto end() const { return ref.rend(); }
};
#line 7 "other/b.cpp"
namespace workspace {
struct solver;
} // namespace workspace
int main() { config::main<workspace::solver>(); }
unsigned config::cases() {
// return -1; // unspecified
// int t; std::cin >> t; return t; // given
return 1;
}
#line 4 "Library/data_structure/segment_tree/lazy.hpp"
#line 6 "Library/data_structure/segment_tree/lazy.hpp"
template <class Monoid, class Endomorphism,
template <class...> class Container_tmpl = std::vector>
class lazy_segment_tree {
size_t size_orig, height, size_ext;
Container_tmpl<Monoid> data;
Container_tmpl<Endomorphism> lazy;
static_assert(std::is_same<Monoid, decltype(Monoid{} + Monoid{})>::value,
"\'Monoid\' has no proper binary operator+.");
static_assert(std::is_same<Endomorphism,
decltype(Endomorphism{} * Endomorphism{})>::value,
"\'Endomorphism\' has no proper binary operator*.");
static_assert(
std::is_same<Monoid, decltype(Monoid{} * Endomorphism{})>::value,
"\'Endomorphism\' is not applicable to \'Monoid\'.");
void pull(const size_t &node) {
data[node] = data[node << 1] + data[node << 1 | 1];
}
void apply(const size_t &node, const Endomorphism &endo) {
data[node] = data[node] * endo;
if (node < size_ext) lazy[node] = lazy[node] * endo;
}
void push(const size_t &node) {
if (node >= size_ext) return;
apply(node << 1, lazy[node]);
apply(node << 1 | 1, lazy[node]);
lazy[node] = Endomorphism{};
}
template <class Pred>
size_t left_search_subtree(size_t node, Pred pred, Monoid mono) {
assert(node);
while (node < size_ext) {
push(node);
const Monoid &tmp = data[(node <<= 1) | 1] + mono;
if (pred(tmp))
mono = tmp;
else
++node;
}
return ++node -= size_ext;
}
template <class Pred>
size_t right_search_subtree(size_t node, Pred pred, Monoid mono) {
assert(node);
while (node < size_ext) {
push(node);
const Monoid &tmp = mono + data[node <<= 1];
if (pred(tmp)) ++node, mono = tmp;
}
return (node -= size_ext) < size_orig ? node : size_orig;
}
public:
lazy_segment_tree(const size_t n = 0)
: size_orig{n},
height(n > 1 ? 32 - __builtin_clz(n - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext) {}
lazy_segment_tree(const size_t &n, const Monoid &init)
: lazy_segment_tree(n) {
std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<
iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)),
height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0),
size_ext{1u << height},
data(size_ext << 1),
lazy(size_ext) {
static_assert(std::is_constructible<Monoid, value_type>::value,
"Monoid(iter_type::value_type) is not constructible.");
for (auto iter{std::next(std::begin(data), size_ext)};
iter != std::end(data) && first != last; ++iter, ++first)
*iter = Monoid(*first);
for (size_t i{size_ext}; --i;) pull(i);
}
template <class Container, typename = typename Container::value_type>
lazy_segment_tree(const Container &cont)
: lazy_segment_tree(std::begin(cont), std::end(cont)) {}
size_t size() const { return size_orig; }
size_t capacity() const { return size_ext; }
Monoid operator[](const size_t &index) { return fold(index, index + 1); }
void update(const size_t &index, const Endomorphism &endo) {
update(index, index + 1, endo);
}
void update(size_t first, size_t last, const Endomorphism &endo) {
assert(last <= size_orig);
if (first >= last) return;
first += size_ext, last += size_ext - 1;
for (size_t i = height; i; --i) push(first >> i), push(last >> i);
for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {
if (l < r) {
if (l & 1) apply(l++, endo);
if (r & 1) apply(--r, endo);
}
if (first >>= 1, last >>= 1) {
pull(first), pull(last);
}
}
}
Monoid fold() { return fold(0, size_orig); }
Monoid fold(size_t first, size_t last) {
assert(last <= size_orig);
if (first >= last) return Monoid{};
first += size_ext, last += size_ext - 1;
Monoid left_val{}, right_val{};
for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {
if (l < r) {
if (l & 1) left_val = left_val + data[l++];
if (r & 1) right_val = data[--r] + right_val;
}
if (first >>= 1, last >>= 1) {
left_val = left_val * lazy[first];
right_val = right_val * lazy[last];
}
}
return left_val + right_val;
}
template <class Pred> size_t left_search(size_t right, Pred pred) {
assert(right <= size_orig);
right += size_ext - 1;
for (size_t i{height}; i; --i) push(right >> i);
++right;
Monoid mono{};
for (size_t left{size_ext}; left != right; left >>= 1, right >>= 1) {
if ((left & 1) != (right & 1)) {
const Monoid &tmp = data[--right] + mono;
if (!pred(tmp)) return left_search_subtree(right, pred, mono);
mono = tmp;
}
}
return 0;
}
template <class Pred> size_t right_search(size_t left, Pred pred) {
assert(left <= size_orig);
left += size_ext;
for (size_t i{height}; i; --i) push(left >> i);
Monoid mono{};
for (size_t right{size_ext << 1}; left != right; left >>= 1, right >>= 1) {
if ((left & 1) != (right & 1)) {
const Monoid &tmp = mono + data[left];
if (!pred(tmp)) return right_search_subtree(left, pred, mono);
mono = tmp;
++left;
}
}
return size_orig;
}
}; // class lazy_segment_tree
#line 18 "other/b.cpp"
struct workspace::solver {
solver() {
// start here!
const i64 inf = 1e18;
struct endo {
i64 value = 0;
endo operator*(endo rhs) { return {value + rhs.value}; }
};
struct mono {
i64 value = inf;
mono operator*(endo rhs) { return {value + rhs.value}; }
mono operator+(mono rhs) { return {min(value, rhs.value)}; }
};
int n;
cin >> n;
lazy_segment_tree<mono, endo> laz;
{
vector<mono> init(n);
for (auto i = 0; i < n; ++i) {
i64 a;
cin >> a;
init[i] = {a};
}
laz = init;
}
int q;
cin >> q;
while (q--) {
int k, l, r, c;
cin >> k >> l >> r >> c;
--l;
k--;
if (k) {
cout << laz.fold(l, r).value << eol;
} else {
laz.update(l, r, {c});
}
}
}
};
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0