結果

問題 No.1234 典型RMQ
ユーザー くれちー
提出日時 2020-09-18 22:14:31
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 75 ms / 2,000 ms
コード長 21,352 bytes
コンパイル時間 15,133 ms
コンパイル使用メモリ 379,620 KB
実行使用メモリ 6,144 KB
最終ジャッジ日時 2024-11-09 01:54:31
合計ジャッジ時間 18,707 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// The main code is at the very bottom.
#[allow(unused_imports)]
use {
lib::byte::ByteChar,
std::cell::{Cell, RefCell},
std::cmp::{
self,
Ordering::{self, *},
Reverse,
},
std::collections::*,
std::convert::identity,
std::fmt::{self, Debug, Display, Formatter},
std::io::prelude::*,
std::iter::{self, FromIterator},
std::marker::PhantomData,
std::mem,
std::num::Wrapping,
std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
std::process,
std::rc::Rc,
std::thread,
std::time::{Duration, Instant},
std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};
#[allow(unused_imports)]
#[macro_use]
pub mod lib {
pub mod byte {
pub use self::byte_char::*;
mod byte_char {
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};
use std::str::FromStr;
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct ByteChar(pub u8);
impl Debug for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "b'{}'", self.0 as char)
}
}
impl Display for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.0 as char)
}
}
impl FromStr for ByteChar {
type Err = ParseByteCharError;
fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
match s.as_bytes().len() {
1 => Ok(ByteChar(s.as_bytes()[0])),
0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
_ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct ParseByteCharError {
kind: ParseByteCharErrorKind,
}
impl Display for ParseByteCharError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.write_str(match self.kind {
ParseByteCharErrorKind::EmptyStr => "empty string",
ParseByteCharErrorKind::TooManyBytes => "too many bytes",
})
}
}
impl Error for ParseByteCharError {}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum ParseByteCharErrorKind {
EmptyStr,
TooManyBytes,
}
impl From<ParseByteCharErrorKind> for ParseByteCharError {
fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
ParseByteCharError { kind }
}
}
}
}
pub mod io {
pub use self::scanner::*;
mod scanner {
use std::io::{self, BufRead};
use std::iter;
use std::str::FromStr;
#[derive(Debug)]
pub struct Scanner<R> {
reader: R,
buf: String,
pos: usize,
}
impl<R: BufRead> Scanner<R> {
pub fn new(reader: R) -> Self {
Scanner {
reader,
buf: String::new(),
pos: 0,
}
}
pub fn next(&mut self) -> io::Result<&str> {
let start = loop {
match self.rest().find(|c| c != ' ') {
Some(i) => break i,
None => self.fill_buf()?,
}
};
self.pos += start;
let len = self.rest().find(' ').unwrap_or(self.rest().len());
let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
self.pos += len;
Ok(s)
}
pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
where
T: FromStr,
{
Ok(self.next()?.parse())
}
pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
where
T: FromStr,
{
iter::repeat_with(|| self.parse_next()).take(n).collect()
}
pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
where
F: FnMut(u8) -> T,
{
Ok(self.next()?.bytes().map(&mut f).collect())
}
pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
where
F: FnMut(u8) -> T,
{
iter::repeat_with(|| self.map_next_bytes(&mut f))
.take(n)
.collect()
}
fn rest(&self) -> &str {
&self.buf[self.pos..]
}
fn fill_buf(&mut self) -> io::Result<()> {
self.buf.clear();
self.pos = 0;
let read = self.reader.read_line(&mut self.buf)?;
if read == 0 {
return Err(io::ErrorKind::UnexpectedEof.into());
}
if *self.buf.as_bytes().last().unwrap() == b'\n' {
self.buf.pop();
}
Ok(())
}
}
}
}
}
// https://github.com/rust-lang-ja/ac-library-rs/tree/ee0d3df1aa0e7d3c65daaa7cc9d7fb13a46928f2
#[allow(unused_imports)]
pub mod ac_library_rs {
mod segtree {
use crate::ac_library_rs::internal_type_traits::{BoundedAbove, BoundedBelow, One, Zero};
use std::cmp::{max, min};
use std::convert::Infallible;
use std::marker::PhantomData;
use std::ops::{Add, Mul};
// TODO Should I split monoid-related traits to another module?
pub trait Monoid {
type S: Clone;
fn identity() -> Self::S;
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
}
pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Max<S>
where
S: Copy + Ord + BoundedBelow,
{
type S = S;
fn identity() -> Self::S {
S::min_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
max(*a, *b)
}
}
pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Min<S>
where
S: Copy + Ord + BoundedAbove,
{
type S = S;
fn identity() -> Self::S {
S::max_value()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
min(*a, *b)
}
}
pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Additive<S>
where
S: Copy + Add<Output = S> + Zero,
{
type S = S;
fn identity() -> Self::S {
S::zero()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a + *b
}
}
pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
impl<S> Monoid for Multiplicative<S>
where
S: Copy + Mul<Output = S> + One,
{
type S = S;
fn identity() -> Self::S {
S::one()
}
fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
*a * *b
}
}
}
mod lazysegtree {
use crate::ac_library_rs::internal_bit::ceil_pow2;
use crate::ac_library_rs::Monoid;
pub trait MapMonoid {
type M: Monoid;
type F: Clone;
// type S = <Self::M as Monoid>::S;
fn identity_element() -> <Self::M as Monoid>::S {
Self::M::identity()
}
fn binary_operation(
a: &<Self::M as Monoid>::S,
b: &<Self::M as Monoid>::S,
) -> <Self::M as Monoid>::S {
Self::M::binary_operation(a, b)
}
fn identity_map() -> Self::F;
fn mapping(f: &Self::F, x: &<Self::M as Monoid>::S) -> <Self::M as Monoid>::S;
fn composition(f: &Self::F, g: &Self::F) -> Self::F;
}
impl<F: MapMonoid> Default for LazySegtree<F> {
fn default() -> Self {
Self::new(0)
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn new(n: usize) -> Self {
vec![F::identity_element(); n].into()
}
}
impl<F: MapMonoid> From<Vec<<F::M as Monoid>::S>> for LazySegtree<F> {
fn from(v: Vec<<F::M as Monoid>::S>) -> Self {
let n = v.len();
let log = ceil_pow2(n as u32) as usize;
let size = 1 << log;
let mut d = vec![F::identity_element(); 2 * size];
let lz = vec![F::identity_map(); size];
d[size..(size + n)].clone_from_slice(&v);
let mut ret = LazySegtree {
n,
size,
log,
d,
lz,
};
for i in (1..size).rev() {
ret.update(i);
}
ret
}
}
impl<F: MapMonoid> LazySegtree<F> {
pub fn set(&mut self, mut p: usize, x: <F::M as Monoid>::S) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = x;
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn get(&mut self, mut p: usize) -> <F::M as Monoid>::S {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p].clone()
}
pub fn prod(&mut self, mut l: usize, mut r: usize) -> <F::M as Monoid>::S {
assert!(l <= r && r <= self.n);
if l == r {
return F::identity_element();
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push(r >> i);
}
}
let mut sml = F::identity_element();
let mut smr = F::identity_element();
while l < r {
if l & 1 != 0 {
sml = F::binary_operation(&sml, &self.d[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
smr = F::binary_operation(&self.d[r], &smr);
}
l >>= 1;
r >>= 1;
}
F::binary_operation(&sml, &smr)
}
pub fn all_prod(&self) -> <F::M as Monoid>::S {
self.d[1].clone()
}
pub fn apply(&mut self, mut p: usize, f: F::F) {
assert!(p < self.n);
p += self.size;
for i in (1..=self.log).rev() {
self.push(p >> i);
}
self.d[p] = F::mapping(&f, &self.d[p]);
for i in 1..=self.log {
self.update(p >> i);
}
}
pub fn apply_range(&mut self, mut l: usize, mut r: usize, f: F::F) {
assert!(l <= r && r <= self.n);
if l == r {
return;
}
l += self.size;
r += self.size;
for i in (1..=self.log).rev() {
if ((l >> i) << i) != l {
self.push(l >> i);
}
if ((r >> i) << i) != r {
self.push((r - 1) >> i);
}
}
{
let l2 = l;
let r2 = r;
while l < r {
if l & 1 != 0 {
self.all_apply(l, f.clone());
l += 1;
}
if r & 1 != 0 {
r -= 1;
self.all_apply(r, f.clone());
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..=self.log {
if ((l >> i) << i) != l {
self.update(l >> i);
}
if ((r >> i) << i) != r {
self.update((r - 1) >> i);
}
}
}
pub fn max_right<G>(&mut self, mut l: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(l <= self.n);
assert!(g(F::identity_element()));
if l == self.n {
return self.n;
}
l += self.size;
for i in (1..=self.log).rev() {
self.push(l >> i);
}
let mut sm = F::identity_element();
while {
// do
while l % 2 == 0 {
l >>= 1;
}
if !g(F::binary_operation(&sm, &self.d[l])) {
while l < self.size {
self.push(l);
l *= 2;
let res = F::binary_operation(&sm, &self.d[l]);
if g(res.clone()) {
sm = res;
l += 1;
}
}
return l - self.size;
}
sm = F::binary_operation(&sm, &self.d[l]);
l += 1;
//while
{
let l = l as isize;
(l & -l) != l
}
} {}
self.n
}
pub fn min_left<G>(&mut self, mut r: usize, g: G) -> usize
where
G: Fn(<F::M as Monoid>::S) -> bool,
{
assert!(r <= self.n);
assert!(g(F::identity_element()));
if r == 0 {
return 0;
}
r += self.size;
for i in (1..=self.log).rev() {
self.push((r - 1) >> i);
}
let mut sm = F::identity_element();
while {
// do
r -= 1;
while r > 1 && r % 2 != 0 {
r >>= 1;
}
if !g(F::binary_operation(&self.d[r], &sm)) {
while r < self.size {
self.push(r);
r = 2 * r + 1;
let res = F::binary_operation(&self.d[r], &sm);
if g(res.clone()) {
sm = res;
r -= 1;
}
}
return r + 1 - self.size;
}
sm = F::binary_operation(&self.d[r], &sm);
// while
{
let r = r as isize;
(r & -r) != r
}
} {}
0
}
}
pub struct LazySegtree<F>
where
F: MapMonoid,
{
n: usize,
size: usize,
log: usize,
d: Vec<<F::M as Monoid>::S>,
lz: Vec<F::F>,
}
impl<F> LazySegtree<F>
where
F: MapMonoid,
{
fn update(&mut self, k: usize) {
self.d[k] = F::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: F::F) {
self.d[k] = F::mapping(&f, &self.d[k]);
if k < self.size {
self.lz[k] = F::composition(&f, &self.lz[k]);
}
}
fn push(&mut self, k: usize) {
self.all_apply(2 * k, self.lz[k].clone());
self.all_apply(2 * k + 1, self.lz[k].clone());
self.lz[k] = F::identity_map();
}
}
// TODO is it useful?
use std::fmt::{Debug, Error, Formatter, Write};
impl<F> Debug for LazySegtree<F>
where
F: MapMonoid,
F::F: Debug,
<F::M as Monoid>::S: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
for i in 0..self.log {
for j in 0..1 << i {
f.write_fmt(format_args!(
"{:?}[{:?}]\t",
self.d[(1 << i) + j],
self.lz[(1 << i) + j]
))?;
}
f.write_char('\n')?;
}
for i in 0..self.size {
f.write_fmt(format_args!("{:?}\t", self.d[self.size + i]))?;
}
Ok(())
}
}
}
pub(crate) mod internal_bit {
// Skipped:
//
// - `bsf` = `__builtin_ctz`: is equivalent to `{integer}::trailing_zeros`
#[allow(dead_code)]
pub(crate) fn ceil_pow2(n: u32) -> u32 {
32 - n.saturating_sub(1).leading_zeros()
}
}
pub(crate) mod internal_type_traits {
use std::{
fmt,
iter::{Product, Sum},
ops::{
Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
SubAssign,
},
};
// Skipped:
//
// - `is_signed_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `to_unsigned_t<T>` (not used in `fenwicktree.rs`)
/// Corresponds to `std::is_integral` in C++.
// We will remove unnecessary bounds later.
//
// Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
// same way as the original ACL.
pub trait Integral:
'static
+ Send
+ Sync
+ Copy
+ Ord
+ Not<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Rem<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Sum
+ Product
+ BitOr<Output = Self>
+ BitAnd<Output = Self>
+ BitXor<Output = Self>
+ BitOrAssign
+ BitAndAssign
+ BitXorAssign
+ Shl<Output = Self>
+ Shr<Output = Self>
+ ShlAssign
+ ShrAssign
+ fmt::Display
+ fmt::Debug
+ fmt::Binary
+ fmt::Octal
+ Zero
+ One
+ BoundedBelow
+ BoundedAbove
{
}
/// Class that has additive identity element
pub trait Zero {
/// The additive identity element
fn zero() -> Self;
}
/// Class that has multiplicative identity element
pub trait One {
/// The multiplicative identity element
fn one() -> Self;
}
pub trait BoundedBelow {
fn min_value() -> Self;
}
pub trait BoundedAbove {
fn max_value() -> Self;
}
macro_rules! impl_integral {
($($ty:ty),*) => {
$(
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1
}
}
impl BoundedBelow for $ty {
#[inline]
fn min_value() -> Self {
Self::min_value()
}
}
impl BoundedAbove for $ty {
#[inline]
fn max_value() -> Self {
Self::max_value()
}
}
impl Integral for $ty {}
)*
};
}
impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
}
pub use lazysegtree::{LazySegtree, MapMonoid};
pub use segtree::{Additive, Max, Min, Monoid, Multiplicative};
}
#[allow(unused_macros)]
macro_rules! eprint {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprint!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! eprintln {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprintln!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! dbg {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::dbg!($($arg)*)
} else {
($($arg)*)
}
};
}
const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(1024);
const INTERACTIVE: bool = false;
fn main() -> std::io::Result<()> {
match CUSTOM_STACK_SIZE_MIB {
Some(stack_size_mib) => std::thread::Builder::new()
.name("run_solver".to_owned())
.stack_size(stack_size_mib * 1024 * 1024)
.spawn(run_solver)?
.join()
.unwrap(),
None => run_solver(),
}
}
fn run_solver() -> std::io::Result<()> {
let stdin = std::io::stdin();
let reader = stdin.lock();
let stdout = std::io::stdout();
let writer = stdout.lock();
macro_rules! with_wrapper {
($($wrapper:expr)?) => {{
let mut writer = $($wrapper)?(writer);
solve(reader, &mut writer)?;
writer.flush()
}};
}
if cfg!(debug_assertions) || INTERACTIVE {
with_wrapper!()
} else {
with_wrapper!(std::io::BufWriter::new)
}
}
fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
R: BufRead,
W: Write,
{
let mut _scanner = lib::io::Scanner::new(reader);
#[allow(unused_macros)]
macro_rules! scan {
($T:ty) => {
_scanner.parse_next::<$T>()?.unwrap()
};
($($T:ty),+) => {
($(scan!($T)),+)
};
($T:ty; $n:expr) => {
_scanner.parse_next_n::<$T>($n)?.unwrap()
};
($($T:ty),+; $n:expr) => {
iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
.take($n)
.collect::<std::io::Result<Vec<_>>>()?
};
}
#[allow(unused_macros)]
macro_rules! scan_bytes_map {
($f:expr) => {
_scanner.map_next_bytes($f)?
};
($f:expr; $n:expr) => {
_scanner.map_next_bytes_n($n, $f)?
};
}
#[allow(unused_macros)]
macro_rules! print {
($($arg:tt)*) => {
write!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! println {
($($arg:tt)*) => {
writeln!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! answer {
($($arg:tt)*) => {{
println!($($arg)*);
return Ok(());
}};
}
{
use ac_library_rs::{LazySegtree, MapMonoid, Min, Monoid as _};
enum F {}
impl MapMonoid for F {
type M = Min<i64>;
type F = i64;
fn identity_map() -> Self::F {
0
}
fn mapping(&f: &i64, &a: &i64) -> i64 {
if a == Min::<i64>::identity() {
a
} else {
f + a
}
}
fn composition(&f: &i64, &g: &i64) -> i64 {
f + g
}
}
let n = scan!(usize);
let a = scan!(i64; n);
let mut segtree = LazySegtree::<F>::from(a);
let q = scan!(usize);
for _ in 0..q {
let (k, l, r, c) = scan!(u8, usize, usize, i64);
match k {
1 => segtree.apply_range(l - 1, r, c),
2 => {
let ans = segtree.prod(l - 1, r);
println!("{}", ans);
}
_ => unreachable!(),
}
}
}
#[allow(unreachable_code)]
Ok(())
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0