結果
| 問題 |
No.1234 典型RMQ
|
| コンテスト | |
| ユーザー |
gyouzasushi
|
| 提出日時 | 2020-09-18 22:14:54 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 276 ms / 2,000 ms |
| コード長 | 6,534 bytes |
| コンパイル時間 | 1,824 ms |
| コンパイル使用メモリ | 200,548 KB |
| 最終ジャッジ日時 | 2025-01-14 17:18:52 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--)
#define all(x) (x).begin(), (x).end()
#define sz(x) int(x.size())
using namespace std;
typedef long long ll;
const int INF = 1e9;
const ll MOD = 1e9 + 7;
const ll LINF = 1e18;
template <class T>
void get_unique(vector<T>& x) {
x.erase(unique(x.begin(), x.end()), x.end());
}
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
vector<T> make_vec(size_t a) {
return vector<T>(a);
}
template <class T, class... Ts>
auto make_vec(size_t a, Ts... ts) {
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template <typename T>
ostream& operator<<(ostream& os, vector<T> v) {
for (int i = 0; i < sz(v); i++) {
os << v[i];
if (i < sz(v) - 1) os << " ";
}
return os;
}
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct LazySegmentTree {
public:
LazySegmentTree() : LazySegmentTree(0) {
}
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {
}
LazySegmentTree(const vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
struct S {
ll num, sz;
};
S op(S a, S b) {
return a.num < b.num ? a : b;
}
using F = ll;
S mapping(F f, S x) {
return {x.num + x.sz * f, x.sz};
}
F composition(F f, F g) {
return f + g;
}
S e() {
return {LINF, 1};
}
F id() {
return 0;
}
int main() {
int n;
cin >> n;
vector<S> a(n);
rep(i, n) cin >> a[i].num, a[i].sz = 1;
LazySegmentTree<S, op, e, F, mapping, composition, id> segt(a);
int q;
cin >> q;
while (q--) {
int k, l, r, c;
cin >> k >> l >> r >> c;
l--;
if (k == 1) {
segt.apply(l, r, c);
}
if (k == 2) {
cout << segt.prod(l, r).num << '\n';
}
}
}
gyouzasushi