結果

問題 No.1234 典型RMQ
ユーザー Thistle
提出日時 2020-09-18 23:16:29
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 311 ms / 2,000 ms
コード長 11,080 bytes
コンパイル時間 2,583 ms
コンパイル使用メモリ 152,232 KB
実行使用メモリ 43,996 KB
最終ジャッジ日時 2024-11-15 05:01:19
合計ジャッジ時間 10,522 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
//[l,r]
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}
//[l,r)
T b(int l, int r) {
return a(l, r - 1);
}
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
};
class mint {
public:ll v;
mint(ll v = 0) { s(v % mod + mod); }
constexpr static int mod = Mod;// (ll)1e9 + 7;
constexpr static int fn_ = (ll)2e6 + 5;
static mint fact[fn_], comp[fn_];
mint pow(int x) const {
mint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline mint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline mint inv()const { return pow(mod - 2); }
inline mint operator-()const { return mint() - *this; }
inline mint& operator+=(const mint b) { return s(v + b.v); }
inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
inline mint operator+(const mint b) const { return mint(v) += b; }
inline mint operator-(const mint b) const { return mint(v) -= b; }
inline mint operator*(const mint b) const { return mint(v) *= b; }
inline mint operator/(const mint b) const { return mint(v) /= b; }
friend ostream& operator<<(ostream& os, const mint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, mint& m) {
int x; is >> x; m = mint(x);
return is;
}
bool operator<(const mint& r)const { return v < r.v; }
bool operator>(const mint& r)const { return v > r.v; }
bool operator<=(const mint& r)const { return v <= r.v; }
bool operator>=(const mint& r)const { return v >= r.v; }
bool operator==(const mint& r)const { return v == r.v; }
bool operator!=(const mint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
mint comb(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
if (k > * this - k) k = *this - k;
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
mint perm(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
}
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
//--------------------------------------------------------------
template<class T>
class LazySegmentTree {
protected:
using UPF = function<void(T&)>;
using QRF = function<void(T&, const T)>;
using F = function<bool(T a)>;
int n, rr;
vector<T>dat;
T e;
LazySegmentTree() {}
LazySegmentTree(int size) { init(size); }
LazySegmentTree(vector<T>& v) {
init(v);
}
virtual ~LazySegmentTree() {}
virtual void eval(T& par, T& a,T& b) = 0;
virtual T proc(const T& a, const T& b) = 0;
public:
void init(int size) {
n = size, rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
for (int i = rr - 2; i >= 0; i--)
dat[i] = proc(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void init(vector<T>& v) {
n = v.size(), rr = 1;
while (rr < n) rr <<= 1;
dat.assign(2 * rr - 1, T());
for (int i = 0; i < n; i++)
dat[i + rr - 1] = v[i];
for (int i = rr - 2; i >= 0; i--)
dat[i] = proc(dat[i * 2 + 1], dat[i * 2 + 2]);
}
//one point update
void set(int at, T x) {
update(0, at, at + 1, 0, rr, [x](T& a) {a = x; });
}
void upd(int a, int b, UPF func) {
upd(0, a, b, 0, rr, func);
}
T qry(int a, int b) {
return qry(0, a, b, 0, rr);
}
T get0() {
return dat[0];
}
//func([a,i))==true, func([a,i+1))==false
int lb(int a, int b, F func) {
e = T();
return lb(0, a, b, 0, rr, func, e);
}
//func([i,b))==true, func([i-1,b))==false
int ub(int a, int b, F func) {
e = T();
return ub(0, a, b, 0, rr, func, e);
}
private:
void upd(int i, const int& a, const int& b, int l, int r, UPF& func) {
if (b <= l || r <= a) return;
if (a <= l && r <= b) {
func(dat[i]);
return;
}
eval(dat[i], dat[i * 2 + 1], dat[i * 2 + 2]);
upd(i * 2 + 1, a, b, l, (l + r) / 2, func);
upd(i * 2 + 2, a, b, (l + r) / 2, r, func);
dat[i] = proc(dat[i * 2 + 1], dat[i * 2 + 2]);
}
T qry(int i, const int& a, const int& b, int l, int r) {
if (b <= l || r <= a) return T();
if (a <= l && r <= b) return dat[i];
eval(dat[i], dat[i * 2 + 1], dat[i * 2 + 2]);
return proc(qry(i * 2 + 1, a, b, l, (l + r) / 2),
qry(i * 2 + 2, a, b, (l + r) / 2, r));
}
int lb(int i, int a, int b, int l, int r, F& func, T& wa) {
if (b <= l || r <= a) return b;
if (a <= l && r <= b) {
if (func(proc(wa, dat[i]))) {
wa = proc(wa, dat[i]);
return b;
}
if (r - l == 1) return l;
}
eval(dat[i], dat[i * 2 + 1], dat[i * 2 + 2]);
int tmp = lb(i * 2 + 1, a, b, l, (l + r) / 2, func, wa);
if (tmp < b) return tmp;
return lb(i * 2 + 2, a, b, (l + r) / 2, r, func, wa);
}
int ub(int i, int a, int b, int l, int r, F& func,T& wa) {
if (b <= l || r <= a) return a;
if (a <= l && r <= b) {
if (func(proc(dat[i], wa))) {
wa = proc(dat[i], wa);
return a;
}
if (r - l == 1) return r;
}
eval(dat[i], dat[i * 2 + 1], dat[i * 2 + 2]);
int tmp = ub(i * 2 + 2, a, b, (l + r) / 2, r, func,wa);
if (tmp > a) return tmp;
return ub(i * 2 + 1, a, b, l, (l + r) / 2, func, wa);
}
};
template<class T>
class Segtree :public LazySegmentTree<T> {
using Base = LazySegmentTree<T>;
public:
Segtree() {}
Segtree(int size) :Base(size) {}
Segtree(vector<ll>& v) {
init(v);
}
void init(int size) {
Base::init(size);
}
void init(vector<ll>& v) {
vector<T>r(v.size());
for (int i = 0; i < v.size(); i++) r[i] = T{ v[i],0,1 };
Base::init(r);
}
void update(int a, int b, ll x) {
Base::upd(a, b, [x](T& a) {
a.val += x;
a.lazy += x;
});
}
ll query(int a, int b) {
return Base::qry(a, b).val;
}
private:
void eval(T& par, T& a, T& b)override {
if (par.lazy != 0) {
a.val += par.lazy;
a.lazy += par.lazy;
b.val += par.lazy;
b.lazy += par.lazy;
}
par.lazy = 0;
}
T proc(const T& a, const T& b)override {
return T{ min(a.val,b.val) ,0,a.len + b.len };
}
};
struct Monoid {
ll val, lazy, len;
Monoid() :val(inf), lazy(0), len(1) {}
Monoid(ll val, ll lazy, ll len) :val(val), lazy(lazy), len(len) {}
};
int n;
vi a;
signed main() {
cin >> n; readv(a, n);
Segtree<Monoid> seg(a);
cdf(read()) {
int k, l, r;ll c; cin >> k >> l >> r >> c;
if (k == 1) {
seg.update(l - 1, r, c);
}
else {
cout << seg.query(l - 1, r) << endl;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0