結果
問題 | No.1234 典型RMQ |
ユーザー | anagohirame |
提出日時 | 2020-09-19 03:52:05 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,352 bytes |
コンパイル時間 | 292 ms |
コンパイル使用メモリ | 82,040 KB |
実行使用メモリ | 95,516 KB |
最終ジャッジ日時 | 2024-07-20 01:03:19 |
合計ジャッジ時間 | 4,603 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
61,540 KB |
testcase_01 | AC | 42 ms
54,560 KB |
testcase_02 | AC | 41 ms
54,356 KB |
testcase_03 | AC | 41 ms
54,576 KB |
testcase_04 | AC | 40 ms
53,604 KB |
testcase_05 | AC | 40 ms
54,364 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
ソースコード
import sys def input(): return sys.stdin.buffer.readline()[:-1] class LazySegTree(): def __init__(self, a, func, unit, oper, comp, idem): #the number of nodes is 2n-1 self.hght = len(a).bit_length() self.n = 1 << self.hght self.size = len(a) self.func = func #(ele, ele) -> ele self.unit = unit #ele self.oper = oper #(ele, op) -> ele self.comp = comp #(op, op) -> op self.idem = idem #op self.node = [unit] * (2 * self.n) #immediate evaluation enables size reduction self.lazy = [idem] * self.n for i in range(self.size + self.n - 1, 0, -1): if i >= self.n: self.node[i] = a[i - self.n] else: self.update(i) def update(self, k): self.node[k] = self.func(self.node[2 * k], self.node[2 * k + 1]) return def apply_node_lazy(self, k, op): self.node[k] = self.oper(op, self.node[k]) if k < self.n: self.lazy[k] = self.comp(op, self.lazy[k]) return def push(self, k): self.apply_node_lazy(2 * k, self.lazy[k]) self.apply_node_lazy(2 * k + 1, self.lazy[k]) self.lazy[k] = self.idem return def set(self, k, x): k += self.n for i in range(self.hght, 0, -1): self.push(k >> i) self.node[k] = x while k > 1: k >>= 1 self.update(k) return def get(self, k): k += self.n for i in range(self.hght, 0, -1): self.push(k >> i) return self.node[k] #[l, r) def prod(self, l, r): if l == r: return self.unit l += self.n r += self.n for i in range(self.hght, 0, -1): if ((l >> i) << i) != l: self.push(l >> i) if ((r >> i) << r) != r: self.push(r >> i) s_l, s_r = self.unit, self.unit while l < r: if l & 1: s_l = self.func(s_l, self.node[l]) l += 1 if r & 1: r -= 1 s_r = self.func(self.node[r], s_r) l >>= 1 r >>= 1 return self.func(s_l, s_r) def all_prod(self): return self.node[1] def point_apply(self, k, op): k += self.n for i in range(self.hght, 0, -1): self.push(k >> i) self.node[k] = self.oper(op, self.node[k]) while k > 1: k >>= 1 self.update(k) return #operate to [l, r) def apply(self, l, r, op): if l == r: return l += self.n r += self.n for i in range(self.hght, 0, -1): if ((l >> i) << i != l): self.push(l >> i) if ((r >> i) << i != r): self.push((r - 1) >> i) l_pres, r_pres = l, r while l < r: if l & 1: self.apply_node_lazy(l, op) l += 1 if r & 1: r -= 1 self.apply_node_lazy(r, op) l >>= 1 r >>= 1 l, r = l_pres, r_pres for i in range(1, self.hght+1): if ((l >> i) << i != l): self.update(l >> i) if ((r >> i) << i != r): self.update((r - 1) >> i) return #maximum of r (within [l, n)) which satisfies val(prod(l, r)) def max_right(self, l, val): if l == self.size: return self.size l += self.n for i in range(self.hght, 0, -1): self.push(l >> i) s = self.unit while True: while l % 2 == 0: l >>= 1 if not val(self.func(s, self.node[l])): while l < self.n: self.push(l) #before descending l <<= 1 if val(self.func(s, self.node[l])): s = self.func(s, self.node[l]) l += 1 return l - self.n s = self.func(s, self.node[l]) l += 1 if (l & -l) == l: return self.size #minimum of l (within [0, r)) which satisfies val(prod(l, r)) def min_left(self, r, val): if r == 0: return 0 r += self.n for i in range(self.hght, 0, -1): self.push((r - 1) >> i) s = self.unit while True: r -= 1 while r > 1 and r % 2: r >>= 1 if not val(self.func(self.node[r], s)): while r < self.n: self.push(r) #before descending r = (r << 1) + 1 if val(self.func(self.node[r], s)): s = self.func(self.node[r], s) r -= 1 return r + 1 - self.n s = self.func(self.node[r], s) if (r & -r) == r: return 0 """ node: (value, size) lazy: value """ from operator import add """ def func(x, y): return min(x, y) unit = 2 * (10 ** 10) def oper(value, x): return x + value def comp(f1, f2): return f1 + f2 idem = 0 """ n = int(input()) a = list(map(int, input().split())) st = LazySegTree(a, min, 22000000000, add, add, 0) ans = [] for _ in range(int(input())): k, l, r, c = map(int, input().split()) if k == 1: if l == r: st.point_apply(l-1, c) else: st.apply(l-1, r, c) else: ans.append(st.prod(l-1, r)) print(*ans, sep="\n")