結果

問題 No.878 Range High-Element Query
ユーザー Ricky_ponRicky_pon
提出日時 2020-09-19 08:41:46
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 68 ms / 2,000 ms
コード長 9,588 bytes
コンパイル時間 2,598 ms
コンパイル使用メモリ 214,316 KB
実行使用メモリ 7,424 KB
最終ジャッジ日時 2024-06-23 05:26:18
合計ジャッジ時間 4,797 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 64 ms
7,168 KB
testcase_12 AC 45 ms
6,656 KB
testcase_13 AC 55 ms
6,144 KB
testcase_14 AC 39 ms
5,632 KB
testcase_15 AC 46 ms
6,528 KB
testcase_16 AC 63 ms
7,424 KB
testcase_17 AC 68 ms
7,424 KB
testcase_18 AC 67 ms
7,424 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))
#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<lint, lint> pll;
template <class T>
bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}
template <class T>
bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}

constexpr lint mod = 1000000007;
constexpr lint INF = mod * mod;
constexpr int MAX = 200010;

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()>
struct segtree {
   public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S> &v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)>
    int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F>
    int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)>
    int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F>
    int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

   private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

#endif  // ATCODER_SEGTREE_HPP

#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value ||
                                  is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T>
using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned =
    typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP

#ifndef ATCODER_FENWICKTREE_HPP
#define ATCODER_FENWICKTREE_HPP 1

namespace atcoder {

// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T>
struct fenwick_tree {
    using U = internal::to_unsigned_t<T>;

   public:
    fenwick_tree() : _n(0) {}
    fenwick_tree(int n) : _n(n), data(n) {}

    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }

    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }

   private:
    int _n;
    std::vector<U> data;

    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};

}  // namespace atcoder

#endif  // ATCODER_FENWICKTREE_HPP

using namespace atcoder;

int K;

struct monoid {
    int val;

    static monoid op(monoid lhs, monoid rhs) { return {max(lhs.val, rhs.val)}; }

    static monoid e() { return {0}; }

    static bool f(monoid m) { return m.val <= K; }
};

struct query {
    int id, l, r;
};

int main() {
    int n, q;
    scanf("%d%d", &n, &q);
    vector<monoid> a(n);
    rep(i, n) scanf("%d", &a[i].val);
    segtree<monoid, monoid::op, monoid::e> st(a);
    pii ps[n];
    rep(i, n) {
        K = a[i].val;
        ps[i].fi = st.min_left(i + 1, monoid::f);
        ps[i].se = i;
    }
    sort(ps, ps + n);

    vector<query> qs(q);
    rep(i, q) {
        int t, l, r;
        scanf("%d%d%d", &t, &l, &r);
        --l;
        qs[i] = {i, l, r};
    }
    sort(qs.begin(), qs.end(),
         [](const query &q1, const query &q2) { return q1.l < q2.l; });

    fenwick_tree<int> ft(n);
    int cur = 0, ans[q];
    for (auto tq : qs) {
        while (cur < n && ps[cur].fi <= tq.l) {
            ft.add(ps[cur].se, 1);
            ++cur;
        }
        ans[tq.id] = ft.sum(tq.l, tq.r);
    }

    rep(i, q) printf("%d\n", ans[i]);
}
0