結果
問題 | No.3046 yukicoderの過去問 |
ユーザー | rniya |
提出日時 | 2020-09-22 12:18:34 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 318 ms / 2,000 ms |
コード長 | 13,442 bytes |
コンパイル時間 | 3,413 ms |
コンパイル使用メモリ | 210,404 KB |
実行使用メモリ | 20,400 KB |
最終ジャッジ日時 | 2024-06-25 23:46:27 |
合計ジャッジ時間 | 6,563 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 302 ms
20,140 KB |
testcase_01 | AC | 298 ms
20,268 KB |
testcase_02 | AC | 303 ms
20,400 KB |
testcase_03 | AC | 301 ms
20,268 KB |
testcase_04 | AC | 298 ms
20,276 KB |
testcase_05 | AC | 294 ms
20,140 KB |
testcase_06 | AC | 314 ms
20,148 KB |
testcase_07 | AC | 318 ms
20,164 KB |
testcase_08 | AC | 308 ms
20,032 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define LOCAL #pragma region Macros typedef long long ll; #define ALL(x) (x).begin(),(x).end() const long long MOD=1000000007; // const long long MOD=998244353; const int INF=1e9; const long long IINF=1e18; const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; const char dir[4]={'D','R','U','L'}; template<typename T> istream &operator>>(istream &is,vector<T> &v){ for (T &x:v) is >> x; return is; } template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){ for (int i=0;i<v.size();++i){ os << v[i] << (i+1==v.size()?"": " "); } return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const pair<T,U> &p){ os << '(' << p.first << ',' << p.second << ')'; return os; } template<typename T,typename U> ostream &operator<<(ostream &os,const map<T,U> &m){ os << '{'; for (auto itr=m.begin();itr!=m.end();++itr){ os << '(' << itr->first << ',' << itr->second << ')'; if (++itr!=m.end()) os << ','; --itr; } os << '}'; return os; } template<typename T> ostream &operator<<(ostream &os,const set<T> &s){ os << '{'; for (auto itr=s.begin();itr!=s.end();++itr){ os << *itr; if (++itr!=s.end()) os << ','; --itr; } os << '}'; return os; } void debug_out(){cerr << '\n';} template<class Head,class... Tail> void debug_out(Head&& head,Tail&&... tail){ cerr << head; if (sizeof...(Tail)>0) cerr << ", "; debug_out(move(tail)...); } #ifdef LOCAL #define debug(...) cerr << " ";\ cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\ cerr << " ";\ debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;} template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;} template<class T1,class T2> inline bool chmin(T1 &a,T2 b){ if (a>b){a=b; return true;} return false; } template<class T1,class T2> inline bool chmax(T1 &a,T2 b){ if (a<b){a=b; return true;} return false; } #pragma endregion template<uint32_t mod> class modint{ using i64=int64_t; using u32=uint32_t; using u64=uint64_t; public: u32 v; constexpr modint(const i64 x=0) noexcept :v(x<0?mod-1-(-(x+1)%mod):x%mod){} constexpr u32 &value() noexcept {return v;} constexpr const u32 &value() const noexcept {return v;} constexpr modint operator+(const modint &rhs) const noexcept {return modint(*this)+=rhs;} constexpr modint operator-(const modint &rhs) const noexcept {return modint(*this)-=rhs;} constexpr modint operator*(const modint &rhs) const noexcept {return modint(*this)*=rhs;} constexpr modint operator/(const modint &rhs) const noexcept {return modint(*this)/=rhs;} constexpr modint &operator+=(const modint &rhs) noexcept { v+=rhs.v; if (v>=mod) v-=mod; return *this; } constexpr modint &operator-=(const modint &rhs) noexcept { if (v<rhs.v) v+=mod; v-=rhs.v; return *this; } constexpr modint &operator*=(const modint &rhs) noexcept { v=(u64)v*rhs.v%mod; return *this; } constexpr modint &operator/=(const modint &rhs) noexcept { return *this*=rhs.pow(mod-2); } constexpr modint pow(u64 exp) const noexcept { modint self(*this),res(1); while (exp>0){ if (exp&1) res*=self; self*=self; exp>>=1; } return res; } template<class T> friend constexpr modint operator+(T x,modint y) noexcept {return modint(x)+y;} template<class T> friend constexpr modint operator-(T x,modint y) noexcept {return modint(x)-y;} template<class T> friend constexpr modint operator*(T x,modint y) noexcept {return modint(x)*y;} template<class T> friend constexpr modint operator/(T x,modint y) noexcept {return modint(x)/y;} constexpr modint &operator++() noexcept {return ++v,*this;} constexpr modint &operator--() noexcept {return --v,*this;} constexpr modint operator++(int) noexcept {modint t=*this; return ++v,t;} constexpr modint operator--(int) noexcept {modint t=*this; return --v,t;} constexpr bool operator==(const modint &rhs) const noexcept {return v==rhs.v;} constexpr bool operator!=(const modint &rhs) const noexcept {return v!=rhs.v;} constexpr bool operator!() const noexcept {return !v;} friend istream &operator>>(istream &s,modint &rhs) noexcept { i64 v; rhs=modint{(s>>v,v)}; return s; } friend ostream &operator<<(ostream &s,const modint &rhs) noexcept { return s<<rhs.v; } }; template<int mod> struct NumberTheoreticTransform{ using Mint=modint<mod>; vector<Mint> roots; vector<int> rev; int base,max_base; Mint root; NumberTheoreticTransform():base(1),rev{0,1},roots{Mint(0),Mint(1)}{ int tmp=mod-1; for (max_base=0;tmp%2==0;++max_base) tmp>>=1; root=2; while (root.pow((mod-1)>>1)==1) ++root; root=root.pow((mod-1)>>max_base); } void ensure_base(int nbase){ if (nbase<=base) return; rev.resize(1<<nbase); for (int i=0;i<(1<<nbase);++i){ rev[i]=(rev[i>>1]>>1)|((i&1)<<(nbase-1)); } roots.resize(1<<nbase); for (;base<nbase;++base){ Mint z=root.pow(1<<(max_base-1-base)); for (int i=1<<(base-1);i<(1<<base);++i){ roots[i<<1]=roots[i]; roots[i<<1|1]=roots[i]*z; } } } void ntt(vector<Mint> &a){ const int n=a.size(); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; for (int i=0;i<n;++i){ if (i<(rev[i]>>shift)){ swap(a[i],a[rev[i]>>shift]); } } for (int k=1;k<n;k<<=1){ for (int i=0;i<n;i+=(k<<1)){ for (int j=0;j<k;++j){ Mint z=a[i+j+k]*roots[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } vector<Mint> multiply(vector<Mint> a,vector<Mint> b){ int need=a.size()+b.size()-1; int nbase=1; while ((1<<nbase)<need) ++nbase; ensure_base(nbase); int sz=1<<nbase; a.resize(sz,Mint(0)); b.resize(sz,Mint(0)); ntt(a); ntt(b); Mint inv_sz=1/Mint(sz); for (int i=0;i<sz;++i) a[i]*=b[i]*inv_sz; reverse(a.begin()+1,a.end()); ntt(a); a.resize(need); return a; } vector<int> multiply(vector<int> a,vector<int> b){ vector<Mint> A(a.size()),B(b.size()); for (int i=0;i<a.size();++i) A[i]=Mint(a[i]); for (int i=0;i<b.size();++i) B[i]=Mint(b[i]); vector<Mint> C=multiply(A,B); vector<int> res(C.size()); for (int i=0;i<C.size();++i) res[i]=C[i].a; return res; } }; template<typename M> vector<M> ArbitaryModConvolution(const vector<M> &a,const vector<M> &b){ int n=a.size(),m=b.size(); static constexpr int mod0=167772161,mod1=469762049,mod2=754974721; using mint0=modint<mod0>; using mint1=modint<mod1>; using mint2=modint<mod2>; NumberTheoreticTransform<mod0> ntt0; NumberTheoreticTransform<mod1> ntt1; NumberTheoreticTransform<mod2> ntt2; vector<mint0> a0(n),b0(m); vector<mint1> a1(n),b1(m); vector<mint2> a2(n),b2(m); for (int i=0;i<n;++i) a0[i]=a[i].v,a1[i]=a[i].v,a2[i]=a[i].v; for (int i=0;i<m;++i) b0[i]=b[i].v,b1[i]=b[i].v,b2[i]=b[i].v; auto c0=ntt0.multiply(a0,b0); auto c1=ntt1.multiply(a1,b1); auto c2=ntt2.multiply(a2,b2); static const mint1 inv0=(mint1)1/mod0; static const mint2 inv1=(mint2)1/mod1,inv0inv1=inv1/mod0; static const M m0=mod0,m0m1=m0*mod1; vector<M> res(n+m-1); for (int i=0;i<n+m-1;++i){ int v0=c0[i].v; int v1=(inv0*(c1[i]-v0)).v; int v2=(inv0inv1*(c2[i]-v0)-inv1*v1).v; res[i]=v0+m0*v1+m0m1*v2; } return res; } template<typename M> struct FormalPowerSeries:vector<M>{ using vector<M>::vector; using Poly=FormalPowerSeries; using MUL=function<Poly(Poly,Poly)>; static MUL &get_mul(){static MUL mul=nullptr; return mul;} static void set_mul(MUL f){get_mul()=f;} void shrink(){ while (this->size()&&this->back()==M(0)) this->pop_back(); } Poly pre(int deg) const {return Poly(this->begin(),this->begin()+min((int)this->size(),deg));} Poly operator+(const M &v) const {return Poly(*this)+=v;} Poly operator+(const Poly &p) const {return Poly(*this)+=p;} Poly operator-(const M &v) const {return Poly(*this)-=v;} Poly operator-(const Poly &p) const {return Poly(*this)-=p;} Poly operator*(const M &v) const {return Poly(*this)*=v;} Poly operator*(const Poly &p) const {return Poly(*this)*=p;} Poly operator/(const Poly &p) const {return Poly(*this)/=p;} Poly operator%(const Poly &p) const {return Poly(*this)%=p;} Poly &operator+=(const M &v){ if (this->empty()) this->resize(1); (*this)[0]+=v; return *this; } Poly &operator+=(const Poly &p){ if (p.size()>this->size()) this->resize(p.size()); for (int i=0;i<p.size();++i) (*this)[i]+=p[i]; return *this; } Poly &operator-=(const M &v){ if (this->empty()) this->resize(1); (*this)[0]-=v; return *this; } Poly &operator-=(const Poly &p){ if (p.size()>this->size()) this->resize(p.size()); for (int i=0;i<p.size();++i) (*this)[i]-=p[i]; return *this; } Poly &operator*=(const M &v){ for (int i=0;i<this->size();++i) (*this)[i]*=v; return *this; } Poly &operator*=(const Poly &p){ if (this->empty()||p.empty()){ this->clear(); return *this; } assert(get_mul()!=nullptr); return *this=get_mul()(*this,p); } Poly &operator/=(const Poly &p){ if (this->size()<p.size()){ this->clear(); return *this; } int n=this->size()-p.size()-1; return *this=(rev().pre(n)*p.rev().inv(n)).pre(n).rev(n); } Poly &operator%=(const Poly &p){return *this-=*this/p*p;} Poly operator<<(const int deg){ Poly res(*this); res.insert(res.begin(),deg,M(0)); return res; } Poly operator>>(const int deg){ if (this->size()<=deg) return {}; Poly res(*this); res.erase(res.begin(),res.begin()+deg); return res; } Poly operator-() const { Poly res(this->size()); for (int i=0;i<this->size();++i) res[i]=-(*this)[i]; return res; } Poly rev(int deg=-1) const { Poly res(*this); if (~deg) res.resize(deg,M(0)); reverse(res.begin(),res.end()); return res; } Poly diff() const { Poly res(max(0,(int)this->size()-1)); for (int i=1;i<this->size();++i) res[i-1]=(*this)[i]*M(i); return res; } Poly integral() const { Poly res(this->size()+1); res[0]=M(0); for (int i=0;i<this->size();++i) res[i+1]=(*this)[i]/M(i+1); return res; } Poly inv(int deg=-1) const { assert((*this)[0]!=M(0)); if (deg<0) deg=this->size(); Poly res({M(1)/(*this)[0]}); for (int i=1;i<deg;i<<=1){ res=(res+res-res*res*pre(i<<1)).pre(i<<1); } return res.pre(deg); } Poly log(int deg=-1) const { assert((*this)[0]==M(1)); if (deg<0) deg=this->size(); return (this->diff()*this->inv(deg)).pre(deg-1).integral(); } Poly sqrt(int deg=-1) const { assert((*this)[0]==M(1)); if (deg==-1) deg=this->size(); Poly res({M(1)}); M inv2=M(1)/M(2); for (int i=1;i<deg;i<<=1){ res=(res+pre(i<<1)*res.inv(i<<1))*inv2; } return res.pre(deg); } Poly exp(int deg=-1){ assert((*this)[0]==M(0)); if (deg<0) deg=this->size(); Poly res({M(1)}); for (int i=1;i<deg;i<<=1){ res=(res*(pre(i<<1)+M(1)-res.log(i<<1))).pre(i<<1); } return res.pre(deg); } Poly pow(long long k,int deg=-1) const { if (deg<0) deg=this->size(); for (int i=0;i<this->size();++i){ if ((*this)[i]==M(0)) continue; if (k*i>deg) return Poly(deg,M(0)); M inv=M(1)/(*this)[i]; Poly res=(((*this*inv)>>i).log()*k).exp()*(*this)[i].pow(k); res=(res<<(i*k)).pre(deg); if (res.size()<deg) res.resize(deg,M(0)); return res; } return *this; } Poly pow_mod(long long k,const Poly &mod) const { Poly x(*this),res={M(1)}; while (k>0){ if (k&1) res=res*x%mod; x=x*x%mod; k>>=1; } return res; } }; using mint=modint<MOD>; using FPS=FormalPowerSeries<mint>; const int MAX_N=100010; int main(){ cin.tie(0); ios::sync_with_stdio(false); auto mul=[&](const FPS::Poly &a,const FPS::Poly &b){ auto res=ArbitaryModConvolution(a,b); return FPS::Poly(res.begin(),res.end()); }; FPS::set_mul(mul); int K,N; cin >> K >> N; FPS a(MAX_N,0); a[0]+=1; for (;N--;){ int x; cin >> x; a[x]-=1; } a=a.inv(); cout << a[K] << '\n'; }