結果
| 問題 |
No.8046 yukicoderの過去問
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2020-09-22 13:01:14 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 338 ms / 2,000 ms |
| コード長 | 13,480 bytes |
| コンパイル時間 | 3,206 ms |
| コンパイル使用メモリ | 209,480 KB |
| 実行使用メモリ | 20,280 KB |
| 最終ジャッジ日時 | 2024-06-26 00:56:24 |
| 合計ジャッジ時間 | 7,106 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define LOCAL
#pragma region Macros
typedef long long ll;
#define ALL(x) (x).begin(),(x).end()
const long long MOD=1000000007;
// const long long MOD=998244353;
const int INF=1e9;
const long long IINF=1e18;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const char dir[4]={'D','R','U','L'};
template<typename T>
istream &operator>>(istream &is,vector<T> &v){
for (T &x:v) is >> x;
return is;
}
template<typename T>
ostream &operator<<(ostream &os,const vector<T> &v){
for (int i=0;i<v.size();++i){
os << v[i] << (i+1==v.size()?"": " ");
}
return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const pair<T,U> &p){
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const map<T,U> &m){
os << '{';
for (auto itr=m.begin();itr!=m.end();++itr){
os << '(' << itr->first << ',' << itr->second << ')';
if (++itr!=m.end()) os << ',';
--itr;
}
os << '}';
return os;
}
template<typename T>
ostream &operator<<(ostream &os,const set<T> &s){
os << '{';
for (auto itr=s.begin();itr!=s.end();++itr){
os << *itr;
if (++itr!=s.end()) os << ',';
--itr;
}
os << '}';
return os;
}
void debug_out(){cerr << '\n';}
template<class Head,class... Tail>
void debug_out(Head&& head,Tail&&... tail){
cerr << head;
if (sizeof...(Tail)>0) cerr << ", ";
debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) cerr << " ";\
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\
cerr << " ";\
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;}
template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;}
template<class T1,class T2> inline bool chmin(T1 &a,T2 b){
if (a>b){a=b; return true;} return false;
}
template<class T1,class T2> inline bool chmax(T1 &a,T2 b){
if (a<b){a=b; return true;} return false;
}
#pragma endregion
template<uint32_t mod> class modint{
using i64=int64_t;
using u32=uint32_t;
using u64=uint64_t;
public:
u32 v;
constexpr modint(const i64 x=0) noexcept :v(x<0?mod-1-(-(x+1)%mod):x%mod){}
constexpr u32 &value() noexcept {return v;}
constexpr const u32 &value() const noexcept {return v;}
constexpr modint operator+(const modint &rhs) const noexcept {return modint(*this)+=rhs;}
constexpr modint operator-(const modint &rhs) const noexcept {return modint(*this)-=rhs;}
constexpr modint operator*(const modint &rhs) const noexcept {return modint(*this)*=rhs;}
constexpr modint operator/(const modint &rhs) const noexcept {return modint(*this)/=rhs;}
constexpr modint &operator+=(const modint &rhs) noexcept {
v+=rhs.v;
if (v>=mod) v-=mod;
return *this;
}
constexpr modint &operator-=(const modint &rhs) noexcept {
if (v<rhs.v) v+=mod;
v-=rhs.v;
return *this;
}
constexpr modint &operator*=(const modint &rhs) noexcept {
v=(u64)v*rhs.v%mod;
return *this;
}
constexpr modint &operator/=(const modint &rhs) noexcept {
return *this*=rhs.pow(mod-2);
}
constexpr modint pow(u64 exp) const noexcept {
modint self(*this),res(1);
while (exp>0){
if (exp&1) res*=self;
self*=self; exp>>=1;
}
return res;
}
constexpr modint &operator++() noexcept {if (++v==mod) v=0; return *this;}
constexpr modint &operator--() noexcept {if (v==0) v=mod; return --v,*this;}
constexpr modint operator++(int) noexcept {modint t=*this; return ++*this,t;}
constexpr modint operator--(int) noexcept {modint t=*this; return --*this,t;}
template<class T> friend constexpr modint operator+(T x,modint y) noexcept {return modint(x)+y;}
template<class T> friend constexpr modint operator-(T x,modint y) noexcept {return modint(x)-y;}
template<class T> friend constexpr modint operator*(T x,modint y) noexcept {return modint(x)*y;}
template<class T> friend constexpr modint operator/(T x,modint y) noexcept {return modint(x)/y;}
constexpr bool operator==(const modint &rhs) const noexcept {return v==rhs.v;}
constexpr bool operator!=(const modint &rhs) const noexcept {return v!=rhs.v;}
constexpr bool operator!() const noexcept {return !v;}
friend istream &operator>>(istream &s,modint &rhs) noexcept {
i64 v; rhs=modint{(s>>v,v)}; return s;
}
friend ostream &operator<<(ostream &s,const modint &rhs) noexcept {
return s<<rhs.v;
}
};
template<int mod>
struct NumberTheoreticTransform{
using Mint=modint<mod>;
vector<Mint> roots;
vector<int> rev;
int base,max_base;
Mint root;
NumberTheoreticTransform():base(1),rev{0,1},roots{Mint(0),Mint(1)}{
int tmp=mod-1;
for (max_base=0;tmp%2==0;++max_base) tmp>>=1;
root=2;
while (root.pow((mod-1)>>1)==1) ++root;
root=root.pow((mod-1)>>max_base);
}
void ensure_base(int nbase){
if (nbase<=base) return;
rev.resize(1<<nbase);
for (int i=0;i<(1<<nbase);++i){
rev[i]=(rev[i>>1]>>1)|((i&1)<<(nbase-1));
}
roots.resize(1<<nbase);
for (;base<nbase;++base){
Mint z=root.pow(1<<(max_base-1-base));
for (int i=1<<(base-1);i<(1<<base);++i){
roots[i<<1]=roots[i];
roots[i<<1|1]=roots[i]*z;
}
}
}
void ntt(vector<Mint> &a){
const int n=a.size();
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for (int i=0;i<n;++i){
if (i<(rev[i]>>shift)){
swap(a[i],a[rev[i]>>shift]);
}
}
for (int k=1;k<n;k<<=1){
for (int i=0;i<n;i+=(k<<1)){
for (int j=0;j<k;++j){
Mint z=a[i+j+k]*roots[j+k];
a[i+j+k]=a[i+j]-z;
a[i+j]=a[i+j]+z;
}
}
}
}
vector<Mint> multiply(vector<Mint> a,vector<Mint> b){
int need=a.size()+b.size()-1;
int nbase=1;
while ((1<<nbase)<need) ++nbase;
ensure_base(nbase);
int sz=1<<nbase;
a.resize(sz,Mint(0)); b.resize(sz,Mint(0));
ntt(a); ntt(b);
Mint inv_sz=1/Mint(sz);
for (int i=0;i<sz;++i) a[i]*=b[i]*inv_sz;
reverse(a.begin()+1,a.end());
ntt(a);
a.resize(need);
return a;
}
vector<int> multiply(vector<int> a,vector<int> b){
vector<Mint> A(a.size()),B(b.size());
for (int i=0;i<a.size();++i) A[i]=Mint(a[i]);
for (int i=0;i<b.size();++i) B[i]=Mint(b[i]);
vector<Mint> C=multiply(A,B);
vector<int> res(C.size());
for (int i=0;i<C.size();++i) res[i]=C[i].a;
return res;
}
};
template<typename M>
vector<M> ArbitaryModConvolution(const vector<M> &a,const vector<M> &b){
int n=a.size(),m=b.size();
static constexpr int mod0=167772161,mod1=469762049,mod2=754974721;
using mint0=modint<mod0>;
using mint1=modint<mod1>;
using mint2=modint<mod2>;
NumberTheoreticTransform<mod0> ntt0;
NumberTheoreticTransform<mod1> ntt1;
NumberTheoreticTransform<mod2> ntt2;
vector<mint0> a0(n),b0(m);
vector<mint1> a1(n),b1(m);
vector<mint2> a2(n),b2(m);
for (int i=0;i<n;++i) a0[i]=a[i].v,a1[i]=a[i].v,a2[i]=a[i].v;
for (int i=0;i<m;++i) b0[i]=b[i].v,b1[i]=b[i].v,b2[i]=b[i].v;
auto c0=ntt0.multiply(a0,b0);
auto c1=ntt1.multiply(a1,b1);
auto c2=ntt2.multiply(a2,b2);
static const mint1 inv0=(mint1)1/mod0;
static const mint2 inv1=(mint2)1/mod1,inv0inv1=inv1/mod0;
static const M m0=mod0,m0m1=m0*mod1;
vector<M> res(n+m-1);
for (int i=0;i<n+m-1;++i){
int v0=c0[i].v;
int v1=(inv0*(c1[i]-v0)).v;
int v2=(inv0inv1*(c2[i]-v0)-inv1*v1).v;
res[i]=v0+m0*v1+m0m1*v2;
}
return res;
}
template<typename M>
struct FormalPowerSeries:vector<M>{
using vector<M>::vector;
using Poly=FormalPowerSeries;
using MUL=function<Poly(Poly,Poly)>;
static MUL &get_mul(){static MUL mul=nullptr; return mul;}
static void set_mul(MUL f){get_mul()=f;}
void shrink(){
while (this->size()&&this->back()==M(0)) this->pop_back();
}
Poly pre(int deg) const {return Poly(this->begin(),this->begin()+min((int)this->size(),deg));}
Poly operator+(const M &v) const {return Poly(*this)+=v;}
Poly operator+(const Poly &p) const {return Poly(*this)+=p;}
Poly operator-(const M &v) const {return Poly(*this)-=v;}
Poly operator-(const Poly &p) const {return Poly(*this)-=p;}
Poly operator*(const M &v) const {return Poly(*this)*=v;}
Poly operator*(const Poly &p) const {return Poly(*this)*=p;}
Poly operator/(const Poly &p) const {return Poly(*this)/=p;}
Poly operator%(const Poly &p) const {return Poly(*this)%=p;}
Poly &operator+=(const M &v){
if (this->empty()) this->resize(1);
(*this)[0]+=v;
return *this;
}
Poly &operator+=(const Poly &p){
if (p.size()>this->size()) this->resize(p.size());
for (int i=0;i<p.size();++i) (*this)[i]+=p[i];
return *this;
}
Poly &operator-=(const M &v){
if (this->empty()) this->resize(1);
(*this)[0]-=v;
return *this;
}
Poly &operator-=(const Poly &p){
if (p.size()>this->size()) this->resize(p.size());
for (int i=0;i<p.size();++i) (*this)[i]-=p[i];
return *this;
}
Poly &operator*=(const M &v){
for (int i=0;i<this->size();++i) (*this)[i]*=v;
return *this;
}
Poly &operator*=(const Poly &p){
if (this->empty()||p.empty()){
this->clear();
return *this;
}
assert(get_mul()!=nullptr);
return *this=get_mul()(*this,p);
}
Poly &operator/=(const Poly &p){
if (this->size()<p.size()){
this->clear();
return *this;
}
int n=this->size()-p.size()-1;
return *this=(rev().pre(n)*p.rev().inv(n)).pre(n).rev(n);
}
Poly &operator%=(const Poly &p){return *this-=*this/p*p;}
Poly operator<<(const int deg){
Poly res(*this);
res.insert(res.begin(),deg,M(0));
return res;
}
Poly operator>>(const int deg){
if (this->size()<=deg) return {};
Poly res(*this);
res.erase(res.begin(),res.begin()+deg);
return res;
}
Poly operator-() const {
Poly res(this->size());
for (int i=0;i<this->size();++i) res[i]=-(*this)[i];
return res;
}
Poly rev(int deg=-1) const {
Poly res(*this);
if (~deg) res.resize(deg,M(0));
reverse(res.begin(),res.end());
return res;
}
Poly diff() const {
Poly res(max(0,(int)this->size()-1));
for (int i=1;i<this->size();++i) res[i-1]=(*this)[i]*M(i);
return res;
}
Poly integral() const {
Poly res(this->size()+1);
res[0]=M(0);
for (int i=0;i<this->size();++i) res[i+1]=(*this)[i]/M(i+1);
return res;
}
Poly inv(int deg=-1) const {
assert((*this)[0]!=M(0));
if (deg<0) deg=this->size();
Poly res({M(1)/(*this)[0]});
for (int i=1;i<deg;i<<=1){
res=(res+res-res*res*pre(i<<1)).pre(i<<1);
}
return res.pre(deg);
}
Poly log(int deg=-1) const {
assert((*this)[0]==M(1));
if (deg<0) deg=this->size();
return (this->diff()*this->inv(deg)).pre(deg-1).integral();
}
Poly sqrt(int deg=-1) const {
assert((*this)[0]==M(1));
if (deg==-1) deg=this->size();
Poly res({M(1)});
M inv2=M(1)/M(2);
for (int i=1;i<deg;i<<=1){
res=(res+pre(i<<1)*res.inv(i<<1))*inv2;
}
return res.pre(deg);
}
Poly exp(int deg=-1){
assert((*this)[0]==M(0));
if (deg<0) deg=this->size();
Poly res({M(1)});
for (int i=1;i<deg;i<<=1){
res=(res*(pre(i<<1)+M(1)-res.log(i<<1))).pre(i<<1);
}
return res.pre(deg);
}
Poly pow(long long k,int deg=-1) const {
if (deg<0) deg=this->size();
for (int i=0;i<this->size();++i){
if ((*this)[i]==M(0)) continue;
if (k*i>deg) return Poly(deg,M(0));
M inv=M(1)/(*this)[i];
Poly res=(((*this*inv)>>i).log()*k).exp()*(*this)[i].pow(k);
res=(res<<(i*k)).pre(deg);
if (res.size()<deg) res.resize(deg,M(0));
return res;
}
return *this;
}
Poly pow_mod(long long k,const Poly &mod) const {
Poly x(*this),res={M(1)};
while (k>0){
if (k&1) res=res*x%mod;
x=x*x%mod; k>>=1;
}
return res;
}
};
using mint=modint<MOD>;
using FPS=FormalPowerSeries<mint>;
const int MAX_N=100010;
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
auto mul=[&](const FPS::Poly &a,const FPS::Poly &b){
auto res=ArbitaryModConvolution(a,b);
return FPS::Poly(res.begin(),res.end());
};
FPS::set_mul(mul);
int K,N; cin >> K >> N;
FPS a(MAX_N,0); ++a[0];
for (;N--;){
int x; cin >> x;
--a[x];
}
a=a.inv();
cout << a[K] << '\n';
}
rniya