結果

問題 No.407 鴨等素数間隔列の数え上げ
ユーザー kissshot7kissshot7
提出日時 2020-09-22 14:22:10
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 55 ms / 1,000 ms
コード長 3,401 bytes
コンパイル時間 1,794 ms
コンパイル使用メモリ 174,784 KB
実行使用メモリ 8,520 KB
最終ジャッジ日時 2024-06-26 02:52:55
合計ジャッジ時間 3,431 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
7,624 KB
testcase_01 AC 4 ms
7,620 KB
testcase_02 AC 4 ms
7,492 KB
testcase_03 AC 8 ms
7,620 KB
testcase_04 AC 5 ms
7,492 KB
testcase_05 AC 43 ms
8,520 KB
testcase_06 AC 24 ms
7,876 KB
testcase_07 AC 4 ms
7,492 KB
testcase_08 AC 5 ms
7,620 KB
testcase_09 AC 5 ms
7,620 KB
testcase_10 AC 4 ms
7,624 KB
testcase_11 AC 4 ms
7,492 KB
testcase_12 AC 4 ms
7,492 KB
testcase_13 AC 5 ms
7,488 KB
testcase_14 AC 4 ms
7,492 KB
testcase_15 AC 4 ms
7,492 KB
testcase_16 AC 4 ms
7,488 KB
testcase_17 AC 4 ms
7,492 KB
testcase_18 AC 4 ms
7,492 KB
testcase_19 AC 9 ms
7,876 KB
testcase_20 AC 18 ms
7,748 KB
testcase_21 AC 9 ms
7,744 KB
testcase_22 AC 8 ms
7,624 KB
testcase_23 AC 11 ms
7,620 KB
testcase_24 AC 15 ms
7,744 KB
testcase_25 AC 27 ms
7,752 KB
testcase_26 AC 23 ms
7,872 KB
testcase_27 AC 7 ms
7,492 KB
testcase_28 AC 12 ms
7,624 KB
testcase_29 AC 22 ms
7,876 KB
testcase_30 AC 7 ms
7,748 KB
testcase_31 AC 19 ms
7,876 KB
testcase_32 AC 25 ms
7,748 KB
testcase_33 AC 53 ms
8,520 KB
testcase_34 AC 55 ms
8,516 KB
testcase_35 AC 46 ms
8,388 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
const ll mod = 1000000007;
const ll INF = mod * mod;
const int INF_N = 1e+9;
typedef pair<int, int> P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
//typedef vector<vector<ll>> mat;
typedef vector<int> vec;

//繰り返し二乗法
ll mod_pow(ll a, ll n, ll m) {
	ll res = 1;
	while (n) {
		if (n & 1)res = res * a%m;
		a = a * a%m; n >>= 1;
	}
	return res;
}

struct modint {
	ll n;
	modint() :n(0) { ; }
	modint(ll m) :n(m) {
		if (n >= mod)n %= mod;
		else if (n < 0)n = (n%mod + mod) % mod;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
	if (n == 0)return modint(1);
	modint res = (a*a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

//逆元(Eucledean algorithm)
ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }

const int max_n = 1 << 18;
modint fact[max_n], factinv[max_n];
void init_f() {
	fact[0] = modint(1);
	for (int i = 0; i < max_n - 1; i++) {
		fact[i + 1] = fact[i] * modint(i + 1);
	}
	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
	for (int i = max_n - 2; i >= 0; i--) {
		factinv[i] = factinv[i + 1] * modint(i + 1);
	}
}
modint comb(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[b] * factinv[a - b];
}
using mP = pair<modint, modint>;

int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };


vector<bool> IsPrime;

void sieve(int max){
    if(max+1 > IsPrime.size()){     // resizeで要素数が減らないように
        IsPrime.resize(max+1,true); // IsPrimeに必要な要素数を確保
    } 
    IsPrime[0] = false; // 0は素数ではない
    IsPrime[1] = false; // 1は素数ではない

    for(int i=2; i*i<=max; ++i) // 0からsqrt(max)まで調べる
        if(IsPrime[i]) // iが素数ならば
            for(int j=2; i*j<=max; ++j) // (max以下の)iの倍数は
                IsPrime[i*j] = false;      // 素数ではない
}

void solve() {
    int n, l; cin >> n >> l;
    sieve(l);
    ll res = 0;
    rep1(i, l){
        if(IsPrime[i]){
            ll cnt = (ll)(n-1)*i;
            if(cnt > l) break;
            res += l-cnt+1;
        }
    }
    cout << res << endl;
}

signed main() {
  ios::sync_with_stdio(false);
  cin.tie(0);
  //cout << fixed << setprecision(10);
  //init_f();
  //init();
  //int t; cin >> t; rep(i, t)solve();
  solve();
//   stop
    return 0;
}
0