結果
| 問題 |
No.1234 典型RMQ
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-09-23 03:54:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 160 ms / 2,000 ms |
| コード長 | 5,041 bytes |
| コンパイル時間 | 2,127 ms |
| コンパイル使用メモリ | 218,488 KB |
| 最終ジャッジ日時 | 2025-01-14 19:43:54 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-9;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
template <typename T, typename E>
struct SegmentTree
{
using F = function<T(T, T)>;
using G = function<T(T, E)>;
using H = function<E(E, E)>;
using P = function<E(E, int)>;
int n;
F f;
G g;
H h;
P p;
T ti;
E ei;
vector<T> dat;
vector<E> laz;
SegmentTree() {}
SegmentTree(
int n_, F f, G g, H h, T ti, E ei, P p = [](E a, int b) { return a; })
: f(f), g(g), h(h), ti(ti), ei(ei), p(p)
{
init(n_);
}
SegmentTree(
vector<T> &v, F f, G g, H h, T ti, E ei, P p = [](E a, int b) { return a; })
: f(f), g(g), h(h), ti(ti), ei(ei), p(p)
{
init(v.size());
build(v);
}
void init(int n_)
{
n = 1;
while (n < n_)
n *= 2;
dat.clear();
dat.resize(2 * n - 1, ti);
laz.clear();
laz.resize(2 * n - 1, ei);
}
void build(const vector<T> v)
{
for (int i = 0; i < v.size(); i++)
dat[i + n - 1] = v[i];
for (int i = n - 2; i >= 0; i--)
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void eval(int len, int k)
{
if (laz[k] == ei)
return;
if (k * 2 + 1 < n * 2 - 1)
{
laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
}
dat[k] = g(dat[k], p(laz[k], len));
laz[k] = ei;
}
T update(int a, int b, E x, int k, int l, int r)
{
eval(r - l, k);
if (r <= a || b <= l)
return dat[k];
if (a <= l && r <= b)
{
laz[k] = h(laz[k], x);
return g(dat[k], p(laz[k], r - l));
}
return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
update(a, b, x, k * 2 + 2, (l + r) / 2, r));
}
T update(int a, int b, E x) { return update(a, b, x, 0, 0, n); }
T query(int a, int b, int k, int l, int r)
{
eval(r - l, k);
if (r <= a || b <= l)
return ti;
if (a <= l && r <= b)
return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
T query(int a, int b) { return query(a, b, 0, 0, n); }
};
void solve()
{
int n;
cin >> n;
vector<ll> a(n);
rep(i, n) cin >> a[i];
auto my_min = [](ll a, ll b) { return min(a, b); };
SegmentTree<ll, ll> sg(a, my_min, plus<ll>(), plus<ll>(), 4e18, 0);
int q;
cin >> q;
rep(qi, q)
{
int k, l, r;
ll c;
cin >> k >> l >> r >> c;
l--;
if (k == 1)
{
sg.update(l, r, c);
}
else
{
cout << sg.query(l, r) << "\n";
}
}
}
int main()
{
solve();
}
stoq