結果
問題 | No.1205 Eye Drops |
ユーザー | macle |
提出日時 | 2020-09-23 19:55:14 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,815 bytes |
コンパイル時間 | 1,728 ms |
コンパイル使用メモリ | 177,568 KB |
実行使用メモリ | 7,992 KB |
最終ジャッジ日時 | 2024-06-28 01:53:48 |
合計ジャッジ時間 | 3,629 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 4 ms
5,760 KB |
testcase_02 | WA | - |
testcase_03 | AC | 4 ms
5,760 KB |
testcase_04 | AC | 3 ms
5,632 KB |
testcase_05 | AC | 4 ms
5,632 KB |
testcase_06 | AC | 4 ms
5,888 KB |
testcase_07 | AC | 4 ms
5,632 KB |
testcase_08 | AC | 4 ms
5,888 KB |
testcase_09 | AC | 4 ms
5,888 KB |
testcase_10 | AC | 4 ms
5,760 KB |
testcase_11 | WA | - |
testcase_12 | AC | 4 ms
5,760 KB |
testcase_13 | WA | - |
testcase_14 | AC | 5 ms
5,760 KB |
testcase_15 | AC | 4 ms
5,888 KB |
testcase_16 | WA | - |
testcase_17 | AC | 5 ms
5,760 KB |
testcase_18 | WA | - |
testcase_19 | AC | 4 ms
5,760 KB |
testcase_20 | AC | 4 ms
5,888 KB |
testcase_21 | AC | 4 ms
5,760 KB |
testcase_22 | AC | 4 ms
6,016 KB |
testcase_23 | WA | - |
testcase_24 | AC | 4 ms
5,760 KB |
testcase_25 | AC | 4 ms
5,760 KB |
testcase_26 | AC | 4 ms
5,888 KB |
testcase_27 | AC | 4 ms
5,888 KB |
testcase_28 | AC | 4 ms
5,760 KB |
testcase_29 | AC | 4 ms
5,888 KB |
testcase_30 | AC | 4 ms
5,760 KB |
testcase_31 | AC | 3 ms
5,760 KB |
testcase_32 | AC | 71 ms
6,400 KB |
testcase_33 | AC | 71 ms
6,400 KB |
testcase_34 | AC | 71 ms
6,400 KB |
testcase_35 | AC | 71 ms
6,528 KB |
testcase_36 | AC | 71 ms
6,400 KB |
testcase_37 | WA | - |
testcase_38 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; //long long using ll = long long; // pair<int, int> using PII = pair<int, int>; //最大値、mod const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; //出力系 #define print(x) cout << x << endl #define prints(x) cout << fixed << setprecision(20) << x << endl #define printc(x) cout << setw(2) << setfill('0') << x << endl; #define yes cout << "Yes" << endl #define YES cout << "YES" << endl #define no cout << "No" << endl #define NO cout << "NO" << endl //配列入力 vector<long long>vecin(ll n){ vector<long long>res(n); for(int i = 0; i < n; i++) cin >> res[i]; return res; } // begin() end() #define all(x) (x).begin(),(x).end() //for #define REP(i,n) for(int i=0, i##_len=(n); i<i##_len; ++i) #define rrep(i,a,b) for(int i=(a);i>(b);i--) #define rep(i,a,b) for(int i=(a);i<(b);i++) //最大公約数 ll gcd(ll x, ll y) { return y ? gcd(y,x%y) : x;} // 最小公倍数 unsigned lcm(unsigned a, unsigned b){ return a / gcd(a, b) * b; } // a = max(a, b), a = min(a, b) template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } // num ^ pow(mod取る) ll pow_mod(ll num, ll pow, ll mod) { ll prod = 1; num %= mod; while (pow > 0) { if (pow & 1) prod = prod * num % mod; num = num * num % mod; pow >>= 1; } return prod; } // 二項係数(MODとる、1 ≦ k ≦ n ≦ 10^7 程度) // COMinit() // COM(x, y) // とコンビで使う // テーブルを作る前処理 long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } //重みつきUnionFInd template<class Abel> struct GUnionFind { vector<int> par; vector<int> rank; vector<Abel> diff_weight; GUnionFind(int n = 1, Abel SUM_UNITY = 0) { init(n, SUM_UNITY); } void init(int n = 1, Abel SUM_UNITY = 0) { par.resize(n); rank.resize(n); diff_weight.resize(n); for (int i = 0; i < n; ++i) par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY; } int root(int x) { if (par[x] == x) { return x; } else { int r = root(par[x]); diff_weight[x] += diff_weight[par[x]]; return par[x] = r; } } Abel weight(int x) { root(x); return diff_weight[x]; } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y, Abel w) { w += weight(x); w -= weight(y); x = root(x); y = root(y); if (x == y) return false; if (rank[x] < rank[y]) swap(x, y), w = -w; if (rank[x] == rank[y]) ++rank[x]; par[y] = x; diff_weight[y] = w; return true; } Abel diff(int x, int y) { return weight(y) - weight(x); } }; // UnionFind struct UnionFind { vector<int> par; vector<int> rank; vector<ll> Size; UnionFind(int n = 1) { init(n); } void init(int n = 1) { par.resize(n + 1); rank.resize(n + 1); Size.resize(n + 1); for (int i = 0; i <= n; ++i) par[i] = i, rank[i] = 0, Size[i] = 1; } int root(int x) { if (par[x] == x) { return x; } else { int r = root(par[x]); return par[x] = r; } } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (rank[x] < rank[y]) swap(x, y); if (rank[x] == rank[y]) ++rank[x]; par[y] = x; Size[x] += Size[y]; return true; } ll size(int x){ return Size[root(x)]; } }; //modint構造体 struct Mint { int val; Mint inv() const{ int tmp,a=val,b=mod,x=1,y=0; while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y); return Mint(x); } public: Mint():val(0){} Mint(ll x){if((val=x%mod)<0)val+=mod;} Mint pow(ll t){Mint res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;}return res;} Mint& operator+=(const Mint& x){if((val+=x.val)>=mod)val-=mod;return *this;} Mint& operator-=(const Mint& x){if((val+=mod-x.val)>=mod)val-=mod; return *this;} Mint& operator*=(const Mint& x){val=(ll)val*x.val%mod; return *this;} Mint& operator/=(const Mint& x){return *this*=x.inv();} bool operator==(const Mint& x) const{return val==x.val;} bool operator!=(const Mint& x) const{return val!=x.val;} bool operator<(const Mint& x) const{return val<x.val;} bool operator<=(const Mint& x) const{return val<=x.val;} bool operator>(const Mint& x) const{return val>x.val;} bool operator>=(const Mint& x) const{return val>=x.val;} Mint operator+(const Mint& x) const{return Mint(*this)+=x;} Mint operator-(const Mint& x) const{return Mint(*this)-=x;} Mint operator*(const Mint& x) const{return Mint(*this)*=x;} Mint operator/(const Mint& x) const{return Mint(*this)/=x;} }; struct factorial { vector<Mint> Fact, Finv; public: //factorial fact(10000010); //fact.nCr(a, b) //「fact」の部分は自由に名前変更可能 factorial(int maxx){ Fact.resize(maxx+1),Finv.resize(maxx+1); Fact[0]=Mint(1); rep(i,0,maxx)Fact[i+1]=Fact[i]*(i+1); Finv[maxx]=Mint(1)/Fact[maxx]; rrep(i,maxx,0)Finv[i-1]=Finv[i]*i; } Mint fact(int n,bool inv=0){if(inv)return Finv[n];else return Fact[n];} Mint nPr(int n,int r){if(n<0||n<r||r<0)return Mint(0);else return Fact[n]*Finv[n-r];} Mint nCr(int n,int r){if(n<0||n<r||r<0)return Mint(0);else return Fact[n]*Finv[r]*Finv[n-r];} }; //他のnCr使えない場合試す Mint com2(int n, int a) { Mint x = 1, y = 1; REP(i, a) { x *= n - i; y *= i + 1; } return x / y; } // 1 * 2 * 3 .... * n (mod) ll modfact(ll n) { if (n <= 1) return 1; return (n * modfact(n - 1)) % MOD; } // kが角度だった場合:cos(k * (PI / 180)); //const double PI = acos(-1);のまま使うと円周率(M_PIもあるよ) const double PI = acos(-1); // 多次元 vector 生成 例: auto dp = make_vec<long long>(N+1, 5, 5, 5); template<class T> vector<T> make_vec(size_t a){ return vector<T>(a); } template<class T, class... Ts> auto make_vec(size_t a, Ts... ts){ return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...)); } //素因数分解 vector<pair<long long, int>>factorize(long long n){ vector<pair<long long, int>> res; for(long long i = 2; i * i <= n; ++i){ if(n % i) continue; res.emplace_back(i, 0); while(n % i == 0){ n /= i; res.back().second++; } } if(n != 1) res.emplace_back(n, 1); return res; } // 素数判定 bool primejudge(long long a){ if(a <= 1) return false; for(long long i = 2; i * i <= a; i++){ if(a % i == 0) return false; } return true; } int dy[4] = {0, 1, 0, -1}, dx[4] = {1, 0, -1, 0}; vector<int>graph[100010]; int main() { int n, m; cin >> n >> m; int now = 0; vector<int>t(m), p(m); REP(i, m) cin >> t[i] >> p[i]; REP(i, m){ if(abs(t[i - 1] - t[i] < abs(p[i + 1] - p[i]))){ no; return 0; } } yes; return 0; }