結果
問題 | No.215 素数サイコロと合成数サイコロ (3-Hard) |
ユーザー | 37zigen |
提出日時 | 2020-09-23 21:53:54 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 2,606 ms / 4,000 ms |
コード長 | 967 bytes |
コンパイル時間 | 90 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 61,820 KB |
最終ジャッジ日時 | 2024-06-28 04:35:08 |
合計ジャッジ時間 | 8,061 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2,436 ms
61,820 KB |
testcase_01 | AC | 2,606 ms
61,820 KB |
ソースコード
import numpy as np MOD=10**9+7 def mul(a, b, MOD=MOD): fft=np.fft def submul(f,g): L=len(f)+len(g)-1 return fft.irfft(fft.rfft(f,L)*fft.rfft(g,L),L)%MOD al=a&(1<<15)-1 bl=b&(1<<15)-1 ah=a>>15 bh=b>>15 x,y,z=submul(al,bl),submul(ah,bh),submul(al+ah,bl+bh) x,y,z=map(lambda v:(v+.5).astype(np.int64),[x,y,z]) return (x+(y<<30)+((z-x-y)<<15))%MOD def coef_of_generating_function(P, Q, N): while N: Q1=Q.copy() Q1[1::2]=-Q1[1::2] P=mul(P,Q1)[N&1::2] Q=mul(Q,Q1)[::2] N//=2 return P[0] def f(dice,n): U=(n+1)*dice[-1] dp=np.zeros((n+1,U+100),dtype=np.int64) dp[0][0]=1 for add in dice: for i in range(n): dp[i+1,add:]+=dp[i,:-add] return dp[n] N,P,C=map(int,input().split()) den=mul(f([2,3,5,7,11,13],P),f([4,6,8,9,10,12],C)) den=-den den[0]=1 g=-den[::-1].cumsum()[::-1]%MOD g[0]=0 print(coef_of_generating_function(g,den,N))