結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー かりあげクンかりあげクン
提出日時 2020-09-24 18:39:45
言語 Haskell
(9.6.2)
結果
AC  
実行時間 222 ms / 9,973 ms
コード長 3,155 bytes
コンパイル時間 1,546 ms
コンパイル使用メモリ 186,868 KB
実行使用メモリ 13,028 KB
最終ジャッジ日時 2023-08-10 16:24:50
合計ジャッジ時間 2,897 ms
ジャッジサーバーID
(参考情報)
judge11 / judge13
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
7,640 KB
testcase_01 AC 3 ms
7,620 KB
testcase_02 AC 3 ms
7,920 KB
testcase_03 AC 3 ms
8,156 KB
testcase_04 AC 142 ms
12,996 KB
testcase_05 AC 142 ms
13,028 KB
testcase_06 AC 102 ms
12,856 KB
testcase_07 AC 102 ms
12,780 KB
testcase_08 AC 103 ms
12,892 KB
testcase_09 AC 222 ms
12,856 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.6.1/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )

Main.hs:58:34: warning: [GHC-68441] [-Wdeprecations]
    In the use of ‘powModInteger’
    (imported from GHC.Integer.GMP.Internals):
    Deprecated: "Use integerPowMod# instead"
   |
58 | powModInt a n mo = fromInteger $ GMP.powModInteger (fromIntegral a) (fromIntegral n) (fromIntegral mo)
   |                                  ^^^^^^^^^^^^^^^^^
[2 of 2] Linking a.out

ソースコード

diff #

{-# LANGUAGE BangPatterns #-}
import qualified Control.Arrow                     as Arrow
import           Data.Bits                         (Bits (unsafeShiftL, unsafeShiftR), FiniteBits (countTrailingZeros))
import           Data.Bool                         (bool)
import qualified Data.ByteString.Char8             as BSC8
import qualified Data.List                         as List
import qualified Data.Vector.Unboxed               as VU
import qualified Data.Vector.Fusion.Stream.Monadic as MS
import qualified GHC.Integer.GMP.Internals         as GMP
-------------------------------------------------------------------------------
main :: IO ()
main = do
  n  <- parse1
  xs <- parseN n
  rep n (\i -> BSC8.putStrLn $ solve $ xs VU.! i)

solve :: Int -> BSC8.ByteString
solve n = BSC8.pack $ bool (show n ++ " 0") (show n ++ " 1") (isPrime n)
-------------------------------------------------------------------------------
isPrime :: Int -> Bool
isPrime k
  | k <= 3 = k == 2 || k == 3
  | even k = False
  | otherwise = millerRabin k
  where
    millerRabin :: Int -> Bool
    millerRabin n
      | n < 2047                = loop [2]
      | n < 1373653             = loop [2,3]
      | n < 9080191             = loop [31,73]
      | n < 25326001            = loop [2,3,5]
      | n < 4759123141          = loop [2,7,61]
      | n < 1122004669633       = loop [2,13,23,1662803]
      | n < 2152302898747       = loop [2,3,5,7,11]
      | n < 3474749660383       = loop [2,3,5,7,11,13]
      | n < 341550071728321     = loop [2,3,5,7,11,13,17]
      | otherwise               = loop [2,325,9375,28178,450775,9780504,1795265022]
      where
        !m = n - 1
        !s = countTrailingZeros m
        !d = unsafeShiftR m s
        check1 :: Int -> Bool
        check1 a = powModInt a d n /= 1
        {-# INLINE check1 #-}
        check2 :: Int -> Int -> Bool
        check2 a i = (powModInt a (d * (unsafeShiftL 1 i)) n) /= m
        {-# INLINE check2 #-}
        loop [] = True
        loop (a:as)
          | check1 a && loop2 a [0..(s-1)] = False
          | otherwise = loop as
          where
            loop2 :: Int -> [Int] -> Bool
            loop2 _ []      = True
            loop2 t_ (r:rs) = check2 t_ r && loop2 t_ rs

powModInt :: Int -> Int -> Int -> Int
powModInt a n mo = fromInteger $ GMP.powModInteger (fromIntegral a) (fromIntegral n) (fromIntegral mo)
{-# INLINE powModInt #-}
-------------------------------------------------------------------------------
type Parser a = BSC8.ByteString -> Maybe (a, BSC8.ByteString)
parseInt :: Parser Int
parseInt = fmap (Arrow.second BSC8.tail) . BSC8.readInt
parse1 :: IO Int
parse1 = readLn
parseN :: Int -> IO (VU.Vector Int)
parseN n = VU.replicateM n parse1
-------------------------------------------------------------------------------
rep :: (Monad m) => Int -> (Int -> m ()) -> m ()
rep n = flip MS.mapM_ (stream 0 n)
{-# INLINE rep #-}

stream :: (Monad m) => Int -> Int -> MS.Stream m Int
stream !l !r = MS.Stream step l
  where
    step x
        | x < r = return $ MS.Yield x (x + 1)
        | otherwise = return MS.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] stream #-}
0