結果

問題 No.137 貯金箱の焦り
ユーザー hitonanodehitonanode
提出日時 2020-09-24 23:12:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2,311 ms / 5,000 ms
コード長 14,945 bytes
コンパイル時間 3,846 ms
コンパイル使用メモリ 243,984 KB
実行使用メモリ 6,684 KB
最終ジャッジ日時 2024-06-28 05:33:25
合計ジャッジ時間 16,431 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 3 ms
5,376 KB
testcase_02 AC 14 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 78 ms
5,376 KB
testcase_05 AC 15 ms
5,376 KB
testcase_06 AC 37 ms
5,376 KB
testcase_07 AC 19 ms
5,376 KB
testcase_08 AC 21 ms
5,376 KB
testcase_09 AC 49 ms
5,376 KB
testcase_10 AC 20 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2,311 ms
6,684 KB
testcase_13 AC 171 ms
5,376 KB
testcase_14 AC 1,059 ms
5,376 KB
testcase_15 AC 1,077 ms
5,376 KB
testcase_16 AC 1,070 ms
5,376 KB
testcase_17 AC 505 ms
5,376 KB
testcase_18 AC 1,055 ms
5,376 KB
testcase_19 AC 1,070 ms
5,376 KB
testcase_20 AC 52 ms
5,376 KB
testcase_21 AC 1,005 ms
5,376 KB
testcase_22 AC 242 ms
5,376 KB
testcase_23 AC 234 ms
5,376 KB
testcase_24 AC 479 ms
5,376 KB
testcase_25 AC 1,029 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template <typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template <typename V, typename T> void ndfill(V &x, const T &val) { x = val; }
template <typename V, typename T> void ndfill(vector<V> &vec, const T &val) { for (auto &v : vec) ndfill(v, val); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> srtunq(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl
#else
#define dbg(x)
#endif

template <int mod>
struct ModInt
{
    using lint = long long;
    static int get_mod() { return mod; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&](){
                std::set<int> fac;
                int v = mod - 1;
                for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < mod; g++) {
                    bool ok = true;
                    for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val;
    constexpr ModInt() : val(0) {}
    constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; }
    constexpr ModInt(lint v) { _setval(v % mod + mod); }
    explicit operator bool() const { return val != 0; }
    constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); }
    constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); }
    constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); }
    constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); }
    constexpr ModInt operator-() const { return ModInt()._setval(mod - val); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); }
    constexpr bool operator==(const ModInt &x) const { return val == x.val; }
    constexpr bool operator!=(const ModInt &x) const { return val != x.val; }
    bool operator<(const ModInt &x) const { return val < x.val; }  // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val;  return os; }
    constexpr lint power(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod;
            n /= 2;
        }
        return ans;
    }
    constexpr lint inv() const { return this->power(mod - 2); }
    constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
    constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }

    inline ModInt fac() const {
        static std::vector<ModInt> facs;
        int l0 = facs.size();
        if (l0 > this->val) return facs[this->val];

        facs.resize(this->val + 1);
        for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));
        return facs[this->val];
    }

    ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
        else return ModInt(k).fac() * ModInt(2).power(k);
    }

    ModInt nCr(const ModInt &r) const {
        if (this->val < r.val) return ModInt(0);
        return this->fac() / ((*this - r).fac() * r.fac());
    }

    ModInt sqrt() const {
        if (val == 0) return 0;
        if (mod == 2) return val;
        if (power((mod - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.power((mod - 1) / 2) == 1) b += 1;
        int e = 0, m = mod - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = power((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.power(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.power(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val, mod - x.val));
    }
};
using mint = ModInt<1234567891>;

// Integer convolution for arbitrary mod
// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.
// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.
// input: a (size: n), b (size: m)
// return: vector (size: n + m - 1)
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner = false);

constexpr int nttprimes[3] = {998244353, 167772161, 469762049};

// Integer FFT (Fast Fourier Transform) for ModInt class
// (Also known as Number Theoretic Transform, NTT)
// is_inverse: inverse transform
// ** Input size must be 2^n **
template <typename MODINT>
void ntt(std::vector<MODINT> &a, bool is_inverse = false)
{
    int n = a.size();
    if (n == 1) return;
    static const int mod = MODINT::get_mod();
    static const MODINT root = MODINT::get_primitive_root();
    assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);

    static std::vector<MODINT> w{1}, iw{1};
    for (int m = w.size(); m < n / 2; m *= 2)
    {
        MODINT dw = root.power((mod - 1) / (4 * m)), dwinv = 1 / dw;
        w.resize(m * 2), iw.resize(m * 2);
        for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
    }

    if (!is_inverse) {
        for (int m = n; m >>= 1;) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
#ifdef __clang__
                    a[i + m] *= w[k];
                    std::tie(a[i], a[i + m]) = std::make_pair(a[i] + a[i + m], a[i] - a[i + m]);
#else
                    MODINT x = a[i], y = a[i + m] * w[k];
                    a[i] = x + y, a[i + m] = x - y;
#endif
                }
            }
        }
    }
    else {
        for (int m = 1; m < n; m *= 2) {
            for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
                for (int i = s; i < s + m; i++) {
#ifdef __clang__
                    std::tie(a[i], a[i + m]) = std::make_pair(a[i] + a[i + m], a[i] - a[i + m]);
                    a[i + m] *= iw[k];
#else
                    MODINT x = a[i], y = a[i + m];
                    a[i] = x + y, a[i + m] = (x - y) * iw[k];
#endif
                }
            }
        }
        int n_inv = MODINT(n).inv();
        for (auto &v : a) v *= n_inv;
    }
}
template <int MOD>
std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {
    int sz = a.size();
    assert(a.size() == b.size() and __builtin_popcount(sz) == 1);
    std::vector<ModInt<MOD>> ap(sz), bp(sz);
    for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];
    if (a == b) {
        ntt(ap, false);
        bp = ap;
    }
    else {
        ntt(ap, false);
        ntt(bp, false);
    }
    for (int i = 0; i < sz; i++) ap[i] *= bp[i];
    ntt(ap, true);
    return ap;
}
long long extgcd_ntt_(long long a, long long b, long long &x, long long &y)
{
    long long d = a;
    if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x;
    else x = 1, y = 0;
    return d;
}
long long modinv_ntt_(long long a, long long m)
{
    long long x, y;
    extgcd_ntt_(a, m, x, y);
    return (m + x % m) % m;
}
long long garner_ntt_(int r0, int r1, int r2, int mod)
{
    using mint2 = ModInt<nttprimes[2]>;
    static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];
    static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv();
    static const long long m01_inv_m2 = mint2(m01).inv();

    int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];
    auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;
    return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val) % mod;
}
template <typename MODINT>
std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner)
{
    int sz = 1, n = a.size(), m = b.size();
    while (sz < n + m) sz <<= 1;
    if (sz <= 16) {
        std::vector<MODINT> ret(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];
        }
        return ret;
    }
    int mod = MODINT::get_mod();
    if (skip_garner or std::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes))
    {
        a.resize(sz), b.resize(sz);
        if (a == b) { ntt(a, false); b = a; }
        else ntt(a, false), ntt(b, false);
        for (int i = 0; i < sz; i++) a[i] *= b[i];
        ntt(a, true);
        a.resize(n + m - 1);
    }
    else {
        std::vector<int> ai(sz), bi(sz);
        for (int i = 0; i < n; i++) ai[i] = a[i].val;
        for (int i = 0; i < m; i++) bi[i] = b[i].val;
        auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);
        auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);
        auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);
        a.resize(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod);
        }
    }
    return a;
}

// Calculate [x^N](num(x) / den(x))
// Coplexity: O(LlgLlgN) ( L = size(num) + size(den) )
template <typename Tp>
Tp coefficient_of_rational_function(long long N, std::vector<Tp> num, std::vector<Tp> den)
{
    assert(N >= 0);
    while (den.size() and den.back() == 0) den.pop_back();
    assert(den.size());
    int h = 0;
    while (den[h] == 0) h++;
    N += h;
    den.erase(den.begin(), den.begin() + h);

    if (den.size() == 1)
    {
        assert(N < int(num.size()));
        return num[N] / den[0];
    }

    while (N)
    {
        std::vector<Tp> g = den;
        for (size_t i = 1; i < g.size(); i += 2)
        {
            g[i] = -g[i];
        }
        auto conv_num_g = nttconv(num, g);
        num.resize((conv_num_g.size() + 1 - (N & 1)) / 2);
        for (size_t i = 0; i < num.size(); i++)
        {
            num[i] = conv_num_g[i * 2 + (N & 1)];
        }
        auto conv_den_g = nttconv(den, g);
        for (size_t i = 0; i < den.size(); i++)
        {
            den[i] = conv_den_g[i * 2];
        }
        N >>= 1;
    }
    return num[0] / den[0];
}

int main()
{
    int N;
    lint M;
    cin >> N >> M;
    vector<int> A(N);
    cin >> A;
    auto rec = [&](auto &&rec, int l, int r) -> vector<mint>
    {
        int c = (l + r) / 2;
        if (l + 1 == r)
        {
            vector<mint> ret(A[l] + 1);
            ret[0] = 1, ret.back() = -1;
            return ret;
        }
        else return nttconv(rec(rec, l, c), rec(rec, c, r));
    };
    vector<mint> v = rec(rec, 0, N);
    cout << coefficient_of_rational_function(M, {1}, v) << '\n';
}
0