結果

問題 No.1238 選抜クラス
ユーザー phocomphocom
提出日時 2020-09-25 21:33:27
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 541 ms / 2,000 ms
コード長 61,398 bytes
コンパイル時間 3,222 ms
コンパイル使用メモリ 176,420 KB
実行使用メモリ 406,144 KB
最終ジャッジ日時 2024-06-28 06:10:49
合計ジャッジ時間 12,620 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
5,248 KB
testcase_01 AC 3 ms
5,248 KB
testcase_02 AC 7 ms
7,552 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 5 ms
5,376 KB
testcase_08 AC 7 ms
7,552 KB
testcase_09 AC 14 ms
12,672 KB
testcase_10 AC 6 ms
6,144 KB
testcase_11 AC 12 ms
11,520 KB
testcase_12 AC 8 ms
8,448 KB
testcase_13 AC 8 ms
8,448 KB
testcase_14 AC 7 ms
7,552 KB
testcase_15 AC 14 ms
12,672 KB
testcase_16 AC 12 ms
11,520 KB
testcase_17 AC 541 ms
406,016 KB
testcase_18 AC 490 ms
382,592 KB
testcase_19 AC 491 ms
390,400 KB
testcase_20 AC 463 ms
367,360 KB
testcase_21 AC 437 ms
345,216 KB
testcase_22 AC 519 ms
406,144 KB
testcase_23 AC 515 ms
406,016 KB
testcase_24 AC 513 ms
406,016 KB
testcase_25 AC 515 ms
406,016 KB
testcase_26 AC 515 ms
406,016 KB
testcase_27 AC 515 ms
406,144 KB
testcase_28 AC 514 ms
406,016 KB
testcase_29 AC 494 ms
390,400 KB
testcase_30 AC 50 ms
41,984 KB
testcase_31 AC 155 ms
128,128 KB
testcase_32 AC 307 ms
244,224 KB
testcase_33 AC 5 ms
5,504 KB
testcase_34 AC 367 ms
295,808 KB
testcase_35 AC 78 ms
64,256 KB
testcase_36 AC 21 ms
18,048 KB
testcase_37 AC 57 ms
47,232 KB
testcase_38 AC 464 ms
367,360 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <set>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <cstdio>
#include <bitset>
#include <queue>
#include <deque>
#include <algorithm>
#include <numeric>
#include <cassert>
#include <functional>
#include <stack>
#include <cmath>
#include <string>
#include <complex>
#include <cassert>

using namespace std;

#define REP(i, N) for (int i = 0; i < (int)N; i++)
#define FOR(i, a, b) for (int i = a; i < (int)b; i++)
#define ALL(x) (x).begin(), (x).end()
#define INF (1 << 30)
#define LLINF (1LL << 62)
#define DEBUG(...) debug(__LINE__, ":" __VA_ARGS__)

constexpr int MOD = 1000000007;
using ll = long long;
using Pii = pair<int, int>;
using Pll = pair<ll, ll>;

inline int popcount(ll x) { return __builtin_popcountll(x); }
inline int div2num(ll x) { return __builtin_ctzll(x); }
inline bool bit(ll x, int b) { return (x >> b) & 1; }

template <class T>
string to_string(T s);
template <class S, class T>
string to_string(pair<S, T> p);
string to_string(string s) { return s; }
string to_string(const char s[]) { return to_string(string(s)); }

template <class T>
string to_string(T v) {
  if (v.empty()) return "{}";
  string ret = "{";
  for (auto x : v) ret += to_string(x) + ",";
  ret.back() = '}';
  return ret;
}

template <class S, class T>
string to_string(pair<S, T> p) {
  return "{" + to_string(p.first) + ":" + to_string(p.second) + "}";
}
void debug() { cerr << endl; }

template <class Head, class... Tail>
void debug(Head head, Tail... tail) {
  cerr << to_string(head) << " ";
  debug(tail...);
}

struct IO {
#ifdef _WIN32
  inline char getchar_unlocked() { return getchar(); }
  inline void putchar_unlocked(char c) { putchar(c); }
#endif
  std::string separator = " ";
  template <class T>
  inline void read(T& x) {
    char c;
    do {
      c = getchar_unlocked();
    } while (c != '-' && (c < '0' || '9' < c));
    bool minus = 0;
    if (c == '-') {
      minus = 1;
      c = getchar_unlocked();
    }
    x = 0;
    while ('0' <= c && c <= '9') {
      x *= 10;
      x += c - '0';
      c = getchar_unlocked();
    }
    if (minus) x = -x;
  }
  inline void read(std::string& x) {
    char c;
    do {
      c = getchar_unlocked();
    } while (c == ' ' || c == '\n');
    x.clear();
    do {
      x += c;
      c = getchar_unlocked();
    } while (c != ' ' && c != '\n' && c != EOF);
  }
  template <class T>
  inline void read(std::vector<T>& v) {
    for (auto& x : v) read(x);
  }
  template <class S, class T>
  inline void read(std::pair<S, T>& p) {
    read(p.first);
    read(p.second);
  }
  template <class Head, class... Tail>
  inline void read(Head& head, Tail&... tail) {
    read(head);
    read(tail...);
  }
  template <class T>
  inline void write(T x) {
    char buf[32];
    int p = 0;
    if (x < 0) {
      x = -x;
      putchar_unlocked('-');
    }
    if (x == 0) putchar_unlocked('0');
    while (x > 0) {
      buf[p++] = (x % 10) + '0';
      x /= 10;
    }
    while (p) {
      putchar_unlocked(buf[--p]);
    }
  }
  inline void write(std::string x) {
    for (char c : x) putchar_unlocked(c);
  }
  inline void write(const char s[]) {
    for (int i = 0; s[i] != 0; ++i) putchar_unlocked(s[i]);
  }
  template <class T>
  inline void write(std::vector<T> v) {
    if (v.empty()) return;
    for (auto itr = v.begin(); itr + 1 != v.end(); ++itr) {
      write(*itr);
      write(separator);
    }
    write(v.back());
  }
  template <class Head, class... Tail>
  inline void write(Head head, Tail... tail) {
    write(head);
    write(separator);
    write(tail...);
  }
  template <class Head, class... Tail>
  inline void writeln(Head head, Tail... tail) {
    write(head, tail...);
    write("\n");
  }
  void set_separator(std::string s) { separator = s; }
} io;

struct Prime {
  int n;
  vector<int> table;
  vector<int> primes;
  Prime(int _n = 100000) {
    n = _n + 1;
    table.resize(n, -1);
    table[0] = 0;
    table[1] = -1;
    for (int i = 2; i * i < n; ++i) {
      if (table[i] == -1) {
        for (int j = i * i; j < n; j += i) {
          table[j] = i;
        }
      }
    }
  }
  void enumerate_primes() {
    primes.clear();
    for (int i = 2; i < n; ++i) {
      if (table[i] == -1) primes.push_back(i);
    }
  }
  vector<pair<long long, int>> prime_factor(long long x) {
    map<long long, int> mp;
    long long div = 2;
    int p = 0;
    while (n <= x && div * div <= x) {
      if (x % div == 0) {
        mp[div]++;
        x /= div;
      } else {
        if (p + 1 < primes.size()) {
          div = primes[++p];
        } else {
          div++;
        }
      }
    }
    if (x < n) {
      while (table[x] != -1) {
        mp[table[x]]++;
        x /= table[x];
      }
    }
    if (x > 1) mp[x]++;
    vector<pair<long long, int>> ret;
    for (auto p : mp) ret.push_back(p);
    return ret;
  }
};

template <int MOD = 1000000007>
struct Math {
  vector<long long> fact, factinv, inv;
  Math(int n = 100000) {
    fact.resize(n + 1);
    factinv.resize(n + 1);
    inv.resize(n + 1);
    fact[0] = fact[1] = 1;
    factinv[0] = factinv[1] = 1;
    inv[1] = 1;
    for (int i = 2; i <= n; ++i) {
      fact[i] = fact[i - 1] * i % MOD;
      inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
      factinv[i] = factinv[i - 1] * inv[i] % MOD;
    }
  }
  long long C(int n, int r) {
    if (n < r || n < 0 || r < 0) {
      return 0;
    } else {
      return fact[n] * (factinv[r] * factinv[n - r] % MOD) % MOD;
    }
  }
  long long P(int n, int r) {
    if (n < r || n < 0 || r < 0) {
      return 0;
    } else {
      return fact[n] * factinv[n - r] % MOD;
    }
  }
  long long H(int n, int r) { return C(n + r - 1, r); }
};

struct UnionFind {
  vector<int> data;
  vector<vector<int>> groups;
  UnionFind(int n) : data(n, -1) {}
  int root(int v) { return data[v] < 0 ? v : data[v] = root(data[v]); }
  bool unite(int u, int v) {
    if ((u = root(u)) == (v = root(v))) {
      return 1;
    } else {
      if (-data[u] < -data[v]) swap(u, v);
      data[u] += data[v];
      data[v] = u;
      return 0;
    }
  }
  int size(int v) { return -data[root(v)]; }
  void make_groups() {
    map<int, vector<int>> mp;
    for (int i = 0; i < data.size(); ++i) mp[root(i)].push_back(i);
    groups.clear();
    for (auto p : mp) groups.push_back(p.second);
  }
};

namespace phc {
long long modpow(long long a, long long n) {
  long long res = 1;
  while (n > 0) {
    if (n & 1) res = res * a % MOD;
    a = a * a % MOD;
    n >>= 1;
  }
  return res;
}
long long modinv(long long a) {
  long long b = MOD, u = 1, v = 0;
  while (b) {
    long long t = a / b;
    a -= t * b;
    swap(a, b);
    u -= t * v;
    swap(u, v);
  }
  u %= MOD;
  if (u < 0) u += MOD;
  return u;
}
long long gcd(long long a, long long b) { return b != 0 ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
}  // namespace phc

template <int mod>
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt& operator+=(const ModInt& p) {
    if ((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt& operator-=(const ModInt& p) {
    if ((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt& operator*=(const ModInt& p) {
    x = (int)(1LL * x * p.x % mod);
    return *this;
  }

  ModInt& operator/=(const ModInt& p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt& p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt& p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt& p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt& p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt& p) const { return x == p.x; }

  bool operator!=(const ModInt& p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream& operator<<(ostream& os, const ModInt& p) { return os << p.x; }

  friend istream& operator>>(istream& is, ModInt& a) {
    int64_t t;
    is >> t;
    a = ModInt<mod>(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt<MOD>;

constexpr int dy[4] = {-1, 0, 1, 0}, dx[4] = {0, -1, 0, 1};

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
  int x = 0;
  while ((1U << x) < (unsigned int)(n)) x++;
  return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
  unsigned long index;
  _BitScanForward(&index, n);
  return index;
#else
  return __builtin_ctz(n);
#endif
}
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_BITOP_HPP
#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0) x += m;
  return x;
}
// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
  unsigned int _m;
  unsigned long long im;
  // @param m `1 <= m`
  barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
  // @return m
  unsigned int umod() const { return _m; }
  // @param a `0 <= a < m`
  // @param b `0 <= b < m`
  // @return `a * b % m`
  unsigned int mul(unsigned int a, unsigned int b) const {
    // [1] m = 1
    // a = b = im = 0, so okay
    // [2] m >= 2
    // im = ceil(2^64 / m)
    // -> im * m = 2^64 + r (0 <= r < m)
    // let z = a*b = c*m + d (0 <= c, d < m)
    // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
    // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) <
    // 2^64 * 2
    // ((ab * im) >> 64) == c or c + 1
    unsigned long long z = a;
    z *= b;
#ifdef _MSC_VER
    unsigned long long x;
    _umul128(z, im, &x);
#else
    unsigned long long x =
        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
    unsigned int v = (unsigned int)(z - x * _m);
    if (_m <= v) v += _m;
    return v;
  }
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
  if (n <= 1) return false;
  if (n == 2 || n == 7 || n == 61) return true;
  if (n % 2 == 0) return false;
  long long d = n - 1;
  while (d % 2 == 0) d /= 2;
  for (long long a : {2, 7, 61}) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0) return {b, 0};
  // Contracts:
  // [1] s - m0 * a = 0 (mod b)
  // [2] t - m1 * a = 0 (mod b)
  // [3] s * |m1| + t * |m0| <= b
  long long s = b, t = a;
  long long m0 = 0, m1 = 1;
  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
    // [3]:
    // (s - t * u) * |m1| + t * |m0 - m1 * u|
    // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
    // = s * |m1| + t * |m0| <= b
    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  // by [3]: |m0| <= b/g
  // by g != b: |m0| < b/g
  if (m0 < 0) m0 += b / s;
  return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
  if (m == 2) return 1;
  if (m == 167772161) return 3;
  if (m == 469762049) return 3;
  if (m == 754974721) return 11;
  if (m == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_MATH_HPP
#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
namespace internal {
template <class T>
struct simple_queue {
  std::vector<T> payload;
  int pos = 0;
  void reserve(int n) { payload.reserve(n); }
  int size() const { return int(payload.size()) - pos; }
  bool empty() const { return pos == int(payload.size()); }
  void push(const T& t) { payload.push_back(t); }
  T& front() { return payload[pos]; }
  void clear() {
    payload.clear();
    pos = 0;
  }
  void pop() { pos++; }
};
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_QUEUE_HPP
#ifndef ATCODER_INTERNAL_SCC_HPP
#define ATCODER_INTERNAL_SCC_HPP 1
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E>
struct csr {
  std::vector<int> start;
  std::vector<E> elist;
  csr(int n, const std::vector<std::pair<int, E>>& edges)
      : start(n + 1), elist(edges.size()) {
    for (auto e : edges) {
      start[e.first + 1]++;
    }
    for (int i = 1; i <= n; i++) {
      start[i] += start[i - 1];
    }
    auto counter = start;
    for (auto e : edges) {
      elist[counter[e.first]++] = e.second;
    }
  }
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
 public:
  scc_graph(int n) : _n(n) {}
  int num_vertices() { return _n; }
  void add_edge(int from, int to) { edges.push_back({from, {to}}); }
  // @return pair of (# of scc, scc id)
  std::pair<int, std::vector<int>> scc_ids() {
    auto g = csr<edge>(_n, edges);
    int now_ord = 0, group_num = 0;
    std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
    visited.reserve(_n);
    auto dfs = [&](auto self, int v) -> void {
      low[v] = ord[v] = now_ord++;
      visited.push_back(v);
      for (int i = g.start[v]; i < g.start[v + 1]; i++) {
        auto to = g.elist[i].to;
        if (ord[to] == -1) {
          self(self, to);
          low[v] = std::min(low[v], low[to]);
        } else {
          low[v] = std::min(low[v], ord[to]);
        }
      }
      if (low[v] == ord[v]) {
        while (true) {
          int u = visited.back();
          visited.pop_back();
          ord[u] = _n;
          ids[u] = group_num;
          if (u == v) break;
        }
        group_num++;
      }
    };
    for (int i = 0; i < _n; i++) {
      if (ord[i] == -1) dfs(dfs, i);
    }
    for (auto& x : ids) {
      x = group_num - 1 - x;
    }
    return {group_num, ids};
  }
  std::vector<std::vector<int>> scc() {
    auto ids = scc_ids();
    int group_num = ids.first;
    std::vector<int> counts(group_num);
    for (auto x : ids.second) counts[x]++;
    std::vector<std::vector<int>> groups(ids.first);
    for (int i = 0; i < group_num; i++) {
      groups[i].reserve(counts[i]);
    }
    for (int i = 0; i < _n; i++) {
      groups[ids.second[i]].push_back(i);
    }
    return groups;
  }

 private:
  int _n;
  struct edge {
    int to;
  };
  std::vector<std::pair<int, edge>> edges;
};
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_SCC_HPP
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
                              unsigned __int128>;
template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value ||
                                  is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
    typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
  using mint = static_modint;

 public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }
  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  static_modint(T v) {
    _v = (unsigned int)(v % umod());
  }
  static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
  unsigned int val() const { return _v; }
  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }
  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }
  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }
  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

 public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }
  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0) x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    _v = (unsigned int)(v % mod());
  }
  dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
  unsigned int val() const { return _v; }
  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }
  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }
  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }
  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_MODINT_HPP
#ifndef ATCODER_CONVOLUTION_HPP
#define ATCODER_CONVOLUTION_HPP 1
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
  static constexpr int g = internal::primitive_root<mint::mod()>;
  int n = int(a.size());
  int h = internal::ceil_pow2(n);
  static bool first = true;
  static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
  if (first) {
    first = false;
    mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
    int cnt2 = bsf(mint::mod() - 1);
    mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }
    mint now = 1;
    for (int i = 0; i < cnt2 - 2; i++) {
      sum_e[i] = es[i] * now;
      now *= ies[i];
    }
  }
  for (int ph = 1; ph <= h; ph++) {
    int w = 1 << (ph - 1), p = 1 << (h - ph);
    mint now = 1;
    for (int s = 0; s < w; s++) {
      int offset = s << (h - ph + 1);
      for (int i = 0; i < p; i++) {
        auto l = a[i + offset];
        auto r = a[i + offset + p] * now;
        a[i + offset] = l + r;
        a[i + offset + p] = l - r;
      }
      now *= sum_e[bsf(~(unsigned int)(s))];
    }
  }
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
  static constexpr int g = internal::primitive_root<mint::mod()>;
  int n = int(a.size());
  int h = internal::ceil_pow2(n);
  static bool first = true;
  static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
  if (first) {
    first = false;
    mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
    int cnt2 = bsf(mint::mod() - 1);
    mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
    for (int i = cnt2; i >= 2; i--) {
      // e^(2^i) == 1
      es[i - 2] = e;
      ies[i - 2] = ie;
      e *= e;
      ie *= ie;
    }
    mint now = 1;
    for (int i = 0; i < cnt2 - 2; i++) {
      sum_ie[i] = ies[i] * now;
      now *= es[i];
    }
  }
  for (int ph = h; ph >= 1; ph--) {
    int w = 1 << (ph - 1), p = 1 << (h - ph);
    mint inow = 1;
    for (int s = 0; s < w; s++) {
      int offset = s << (h - ph + 1);
      for (int i = 0; i < p; i++) {
        auto l = a[i + offset];
        auto r = a[i + offset + p];
        a[i + offset] = l + r;
        a[i + offset + p] =
            (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
      }
      inow *= sum_ie[bsf(~(unsigned int)(s))];
    }
  }
}
}  // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};
  if (std::min(n, m) <= 60) {
    if (n < m) {
      std::swap(n, m);
      std::swap(a, b);
    }
    std::vector<mint> ans(n + m - 1);
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        ans[i + j] += a[i] * b[j];
      }
    }
    return ans;
  }
  int z = 1 << internal::ceil_pow2(n + m - 1);
  a.resize(z);
  internal::butterfly(a);
  b.resize(z);
  internal::butterfly(b);
  for (int i = 0; i < z; i++) {
    a[i] *= b[i];
  }
  internal::butterfly_inv(a);
  a.resize(n + m - 1);
  mint iz = mint(z).inv();
  for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
  return a;
}
template <unsigned int mod = 998244353, class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};
  using mint = static_modint<mod>;
  std::vector<mint> a2(n), b2(m);
  for (int i = 0; i < n; i++) {
    a2[i] = mint(a[i]);
  }
  for (int i = 0; i < m; i++) {
    b2[i] = mint(b[i]);
  }
  auto c2 = convolution(move(a2), move(b2));
  std::vector<T> c(n + m - 1);
  for (int i = 0; i < n + m - 1; i++) {
    c[i] = c2[i].val();
  }
  return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
  int n = int(a.size()), m = int(b.size());
  if (!n || !m) return {};
  static constexpr unsigned long long MOD1 = 754974721;  // 2^24
  static constexpr unsigned long long MOD2 = 167772161;  // 2^25
  static constexpr unsigned long long MOD3 = 469762049;  // 2^26
  static constexpr unsigned long long M2M3 = MOD2 * MOD3;
  static constexpr unsigned long long M1M3 = MOD1 * MOD3;
  static constexpr unsigned long long M1M2 = MOD1 * MOD2;
  static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
  static constexpr unsigned long long i1 =
      internal::inv_gcd(MOD2 * MOD3, MOD1).second;
  static constexpr unsigned long long i2 =
      internal::inv_gcd(MOD1 * MOD3, MOD2).second;
  static constexpr unsigned long long i3 =
      internal::inv_gcd(MOD1 * MOD2, MOD3).second;
  auto c1 = convolution<MOD1>(a, b);
  auto c2 = convolution<MOD2>(a, b);
  auto c3 = convolution<MOD3>(a, b);
  std::vector<long long> c(n + m - 1);
  for (int i = 0; i < n + m - 1; i++) {
    unsigned long long x = 0;
    x += (c1[i] * i1) % MOD1 * M2M3;
    x += (c2[i] * i2) % MOD2 * M1M3;
    x += (c3[i] * i3) % MOD3 * M1M2;
    // B = 2^63, -B <= x, r(real value) < B
    // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
    // r = c1[i] (mod MOD1)
    // focus on MOD1
    // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
    // r = x,
    //     x - M' + (0 or 2B),
    //     x - 2M' + (0, 2B or 4B),
    //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
    // (r - x) = 0, (0)
    //           - M' + (0 or 2B), (1)
    //           -2M' + (0 or 2B or 4B), (2)
    //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
    // we checked that
    //   ((1) mod MOD1) mod 5 = 2
    //   ((2) mod MOD1) mod 5 = 3
    //   ((3) mod MOD1) mod 5 = 4
    long long diff =
        c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
    if (diff < 0) diff += MOD1;
    static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3,
                                                     3 * M1M2M3};
    x -= offset[diff % 5];
    c[i] = x;
  }
  return c;
}
}  // namespace atcoder
#endif  // ATCODER_CONVOLUTION_HPP
#ifndef ATCODER_DSU_HPP
#define ATCODER_DSU_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
 public:
  dsu() : _n(0) {}
  dsu(int n) : _n(n), parent_or_size(n, -1) {}
  int merge(int a, int b) {
    assert(0 <= a && a < _n);
    assert(0 <= b && b < _n);
    int x = leader(a), y = leader(b);
    if (x == y) return x;
    if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
    parent_or_size[x] += parent_or_size[y];
    parent_or_size[y] = x;
    return x;
  }
  bool same(int a, int b) {
    assert(0 <= a && a < _n);
    assert(0 <= b && b < _n);
    return leader(a) == leader(b);
  }
  int leader(int a) {
    assert(0 <= a && a < _n);
    if (parent_or_size[a] < 0) return a;
    return parent_or_size[a] = leader(parent_or_size[a]);
  }
  int size(int a) {
    assert(0 <= a && a < _n);
    return -parent_or_size[leader(a)];
  }
  std::vector<std::vector<int>> groups() {
    std::vector<int> leader_buf(_n), group_size(_n);
    for (int i = 0; i < _n; i++) {
      leader_buf[i] = leader(i);
      group_size[leader_buf[i]]++;
    }
    std::vector<std::vector<int>> result(_n);
    for (int i = 0; i < _n; i++) {
      result[i].reserve(group_size[i]);
    }
    for (int i = 0; i < _n; i++) {
      result[leader_buf[i]].push_back(i);
    }
    result.erase(
        std::remove_if(result.begin(), result.end(),
                       [&](const std::vector<int>& v) { return v.empty(); }),
        result.end());
    return result;
  }

 private:
  int _n;
  // root node: -1 * component size
  // otherwise: parent
  std::vector<int> parent_or_size;
};
}  // namespace atcoder
#endif  // ATCODER_DSU_HPP
#ifndef ATCODER_FENWICKTREE_HPP
#define ATCODER_FENWICKTREE_HPP 1
#include <cassert>
#include <vector>
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T>
struct fenwick_tree {
  using U = internal::to_unsigned_t<T>;

 public:
  fenwick_tree() : _n(0) {}
  fenwick_tree(int n) : _n(n), data(n) {}
  void add(int p, T x) {
    assert(0 <= p && p < _n);
    p++;
    while (p <= _n) {
      data[p - 1] += U(x);
      p += p & -p;
    }
  }
  T sum(int l, int r) {
    assert(0 <= l && l <= r && r <= _n);
    return sum(r) - sum(l);
  }

 private:
  int _n;
  std::vector<U> data;
  U sum(int r) {
    U s = 0;
    while (r > 0) {
      s += data[r - 1];
      r -= r & -r;
    }
    return s;
  }
};
}  // namespace atcoder
#endif  // ATCODER_FENWICKTREE_HPP
#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
 public:
  lazy_segtree() : lazy_segtree(0) {}
  lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
  lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
    log = internal::ceil_pow2(_n);
    size = 1 << log;
    d = std::vector<S>(2 * size, e());
    lz = std::vector<F>(size, id());
    for (int i = 0; i < _n; i++) d[size + i] = v[i];
    for (int i = size - 1; i >= 1; i--) {
      update(i);
    }
  }
  void set(int p, S x) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    d[p] = x;
    for (int i = 1; i <= log; i++) update(p >> i);
  }
  S get(int p) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    return d[p];
  }
  S prod(int l, int r) {
    assert(0 <= l && l <= r && r <= _n);
    if (l == r) return e();
    l += size;
    r += size;
    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push(r >> i);
    }
    S sml = e(), smr = e();
    while (l < r) {
      if (l & 1) sml = op(sml, d[l++]);
      if (r & 1) smr = op(d[--r], smr);
      l >>= 1;
      r >>= 1;
    }
    return op(sml, smr);
  }
  S all_prod() { return d[1]; }
  void apply(int p, F f) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    d[p] = mapping(f, d[p]);
    for (int i = 1; i <= log; i++) update(p >> i);
  }
  void apply(int l, int r, F f) {
    assert(0 <= l && l <= r && r <= _n);
    if (l == r) return;
    l += size;
    r += size;
    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push((r - 1) >> i);
    }
    {
      int l2 = l, r2 = r;
      while (l < r) {
        if (l & 1) all_apply(l++, f);
        if (r & 1) all_apply(--r, f);
        l >>= 1;
        r >>= 1;
      }
      l = l2;
      r = r2;
    }
    for (int i = 1; i <= log; i++) {
      if (((l >> i) << i) != l) update(l >> i);
      if (((r >> i) << i) != r) update((r - 1) >> i);
    }
  }
  template <bool (*g)(S)>
  int max_right(int l) {
    return max_right(l, [](S x) { return g(x); });
  }
  template <class G>
  int max_right(int l, G g) {
    assert(0 <= l && l <= _n);
    assert(g(e()));
    if (l == _n) return _n;
    l += size;
    for (int i = log; i >= 1; i--) push(l >> i);
    S sm = e();
    do {
      while (l % 2 == 0) l >>= 1;
      if (!g(op(sm, d[l]))) {
        while (l < size) {
          push(l);
          l = (2 * l);
          if (g(op(sm, d[l]))) {
            sm = op(sm, d[l]);
            l++;
          }
        }
        return l - size;
      }
      sm = op(sm, d[l]);
      l++;
    } while ((l & -l) != l);
    return _n;
  }
  template <bool (*g)(S)>
  int min_left(int r) {
    return min_left(r, [](S x) { return g(x); });
  }
  template <class G>
  int min_left(int r, G g) {
    assert(0 <= r && r <= _n);
    assert(g(e()));
    if (r == 0) return 0;
    r += size;
    for (int i = log; i >= 1; i--) push((r - 1) >> i);
    S sm = e();
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!g(op(d[r], sm))) {
        while (r < size) {
          push(r);
          r = (2 * r + 1);
          if (g(op(d[r], sm))) {
            sm = op(d[r], sm);
            r--;
          }
        }
        return r + 1 - size;
      }
      sm = op(d[r], sm);
    } while ((r & -r) != r);
    return 0;
  }

 private:
  int _n, size, log;
  std::vector<S> d;
  std::vector<F> lz;
  void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
  void all_apply(int k, F f) {
    d[k] = mapping(f, d[k]);
    if (k < size) lz[k] = composition(f, lz[k]);
  }
  void push(int k) {
    all_apply(2 * k, lz[k]);
    all_apply(2 * k + 1, lz[k]);
    lz[k] = id();
  }
};
}  // namespace atcoder
#endif  // ATCODER_LAZYSEGTREE_HPP
#ifndef ATCODER_MATH_HPP
#define ATCODER_MATH_HPP 1
#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>
namespace atcoder {
long long pow_mod(long long x, long long n, int m) {
  assert(0 <= n && 1 <= m);
  if (m == 1) return 0;
  internal::barrett bt((unsigned int)(m));
  unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
  while (n) {
    if (n & 1) r = bt.mul(r, y);
    y = bt.mul(y, y);
    n >>= 1;
  }
  return r;
}
long long inv_mod(long long x, long long m) {
  assert(1 <= m);
  auto z = internal::inv_gcd(x, m);
  assert(z.first == 1);
  return z.second;
}
// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
  assert(r.size() == m.size());
  int n = int(r.size());
  // Contracts: 0 <= r0 < m0
  long long r0 = 0, m0 = 1;
  for (int i = 0; i < n; i++) {
    assert(1 <= m[i]);
    long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
    if (m0 < m1) {
      std::swap(r0, r1);
      std::swap(m0, m1);
    }
    if (m0 % m1 == 0) {
      if (r0 % m1 != r1) return {0, 0};
      continue;
    }
    // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
    // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
    // r2 % m0 = r0
    // r2 % m1 = r1
    // -> (r0 + x*m0) % m1 = r1
    // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
    // -> x = (r1 - r0) / g * inv(u0) (mod u1)
    // im = inv(u0) (mod u1) (0 <= im < u1)
    long long g, im;
    std::tie(g, im) = internal::inv_gcd(m0, m1);
    long long u1 = (m1 / g);
    // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
    if ((r1 - r0) % g) return {0, 0};
    // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
    long long x = (r1 - r0) / g % u1 * im % u1;
    // |r0| + |m0 * x|
    // < m0 + m0 * (u1 - 1)
    // = m0 + m0 * m1 / g - m0
    // = lcm(m0, m1)
    r0 += x * m0;
    m0 *= u1;  // -> lcm(m0, m1)
    if (r0 < 0) r0 += m0;
  }
  return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b) {
  long long ans = 0;
  if (a >= m) {
    ans += (n - 1) * n * (a / m) / 2;
    a %= m;
  }
  if (b >= m) {
    ans += n * (b / m);
    b %= m;
  }
  long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
  if (y_max == 0) return ans;
  ans += (n - (x_max + a - 1) / a) * y_max;
  ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
  return ans;
}
}  // namespace atcoder
#endif  // ATCODER_MATH_HPP
#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap>
struct mf_graph {
 public:
  mf_graph() : _n(0) {}
  mf_graph(int n) : _n(n), g(n) {}
  int add_edge(int from, int to, Cap cap) {
    assert(0 <= from && from < _n);
    assert(0 <= to && to < _n);
    assert(0 <= cap);
    int m = int(pos.size());
    pos.push_back({from, int(g[from].size())});
    g[from].push_back(_edge{to, int(g[to].size()), cap});
    g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
    return m;
  }
  struct edge {
    int from, to;
    Cap cap, flow;
  };
  edge get_edge(int i) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.to][_e.rev];
    return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
  }
  std::vector<edge> edges() {
    int m = int(pos.size());
    std::vector<edge> result;
    for (int i = 0; i < m; i++) {
      result.push_back(get_edge(i));
    }
    return result;
  }
  void change_edge(int i, Cap new_cap, Cap new_flow) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    assert(0 <= new_flow && new_flow <= new_cap);
    auto& _e = g[pos[i].first][pos[i].second];
    auto& _re = g[_e.to][_e.rev];
    _e.cap = new_cap - new_flow;
    _re.cap = new_flow;
  }
  Cap flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); }
  Cap flow(int s, int t, Cap flow_limit) {
    assert(0 <= s && s < _n);
    assert(0 <= t && t < _n);
    std::vector<int> level(_n), iter(_n);
    internal::simple_queue<int> que;
    auto bfs = [&]() {
      std::fill(level.begin(), level.end(), -1);
      level[s] = 0;
      que.clear();
      que.push(s);
      while (!que.empty()) {
        int v = que.front();
        que.pop();
        for (auto e : g[v]) {
          if (e.cap == 0 || level[e.to] >= 0) continue;
          level[e.to] = level[v] + 1;
          if (e.to == t) return;
          que.push(e.to);
        }
      }
    };
    auto dfs = [&](auto self, int v, Cap up) {
      if (v == s) return up;
      Cap res = 0;
      int level_v = level[v];
      for (int& i = iter[v]; i < int(g[v].size()); i++) {
        _edge& e = g[v][i];
        if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
        Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
        if (d <= 0) continue;
        g[v][i].cap += d;
        g[e.to][e.rev].cap -= d;
        res += d;
        if (res == up) break;
      }
      return res;
    };
    Cap flow = 0;
    while (flow < flow_limit) {
      bfs();
      if (level[t] == -1) break;
      std::fill(iter.begin(), iter.end(), 0);
      while (flow < flow_limit) {
        Cap f = dfs(dfs, t, flow_limit - flow);
        if (!f) break;
        flow += f;
      }
    }
    return flow;
  }
  std::vector<bool> min_cut(int s) {
    std::vector<bool> visited(_n);
    internal::simple_queue<int> que;
    que.push(s);
    while (!que.empty()) {
      int p = que.front();
      que.pop();
      visited[p] = true;
      for (auto e : g[p]) {
        if (e.cap && !visited[e.to]) {
          visited[e.to] = true;
          que.push(e.to);
        }
      }
    }
    return visited;
  }

 private:
  int _n;
  struct _edge {
    int to, rev;
    Cap cap;
  };
  std::vector<std::pair<int, int>> pos;
  std::vector<std::vector<_edge>> g;
};
}  // namespace atcoder
#endif  // ATCODER_MAXFLOW_HPP
#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost>
struct mcf_graph {
 public:
  mcf_graph() {}
  mcf_graph(int n) : _n(n), g(n) {}
  int add_edge(int from, int to, Cap cap, Cost cost) {
    assert(0 <= from && from < _n);
    assert(0 <= to && to < _n);
    int m = int(pos.size());
    pos.push_back({from, int(g[from].size())});
    g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
    g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
    return m;
  }
  struct edge {
    int from, to;
    Cap cap, flow;
    Cost cost;
  };
  edge get_edge(int i) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.to][_e.rev];
    return edge{
        pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
    };
  }
  std::vector<edge> edges() {
    int m = int(pos.size());
    std::vector<edge> result(m);
    for (int i = 0; i < m; i++) {
      result[i] = get_edge(i);
    }
    return result;
  }
  std::pair<Cap, Cost> flow(int s, int t) {
    return flow(s, t, std::numeric_limits<Cap>::max());
  }
  std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
    return slope(s, t, flow_limit).back();
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
    return slope(s, t, std::numeric_limits<Cap>::max());
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
    assert(0 <= s && s < _n);
    assert(0 <= t && t < _n);
    assert(s != t);
    // variants (C = maxcost):
    // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
    // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
    std::vector<Cost> dual(_n, 0), dist(_n);
    std::vector<int> pv(_n), pe(_n);
    std::vector<bool> vis(_n);
    auto dual_ref = [&]() {
      std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
      std::fill(pv.begin(), pv.end(), -1);
      std::fill(pe.begin(), pe.end(), -1);
      std::fill(vis.begin(), vis.end(), false);
      struct Q {
        Cost key;
        int to;
        bool operator<(Q r) const { return key > r.key; }
      };
      std::priority_queue<Q> que;
      dist[s] = 0;
      que.push(Q{0, s});
      while (!que.empty()) {
        int v = que.top().to;
        que.pop();
        if (vis[v]) continue;
        vis[v] = true;
        if (v == t) break;
        // dist[v] = shortest(s, v) + dual[s] - dual[v]
        // dist[v] >= 0 (all reduced cost are positive)
        // dist[v] <= (n-1)C
        for (int i = 0; i < int(g[v].size()); i++) {
          auto e = g[v][i];
          if (vis[e.to] || !e.cap) continue;
          // |-dual[e.to] + dual[v]| <= (n-1)C
          // cost <= C - -(n-1)C + 0 = nC
          Cost cost = e.cost - dual[e.to] + dual[v];
          if (dist[e.to] - dist[v] > cost) {
            dist[e.to] = dist[v] + cost;
            pv[e.to] = v;
            pe[e.to] = i;
            que.push(Q{dist[e.to], e.to});
          }
        }
      }
      if (!vis[t]) {
        return false;
      }
      for (int v = 0; v < _n; v++) {
        if (!vis[v]) continue;
        // dual[v] = dual[v] - dist[t] + dist[v]
        //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
        //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) +
        //         dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >=
        //         0 - (n-1)C
        dual[v] -= dist[t] - dist[v];
      }
      return true;
    };
    Cap flow = 0;
    Cost cost = 0, prev_cost = -1;
    std::vector<std::pair<Cap, Cost>> result;
    result.push_back({flow, cost});
    while (flow < flow_limit) {
      if (!dual_ref()) break;
      Cap c = flow_limit - flow;
      for (int v = t; v != s; v = pv[v]) {
        c = std::min(c, g[pv[v]][pe[v]].cap);
      }
      for (int v = t; v != s; v = pv[v]) {
        auto& e = g[pv[v]][pe[v]];
        e.cap -= c;
        g[v][e.rev].cap += c;
      }
      Cost d = -dual[s];
      flow += c;
      cost += c * d;
      if (prev_cost == d) {
        result.pop_back();
      }
      result.push_back({flow, cost});
      prev_cost = cost;
    }
    return result;
  }

 private:
  int _n;
  struct _edge {
    int to, rev;
    Cap cap;
    Cost cost;
  };
  std::vector<std::pair<int, int>> pos;
  std::vector<std::vector<_edge>> g;
};
}  // namespace atcoder
#endif  // ATCODER_MINCOSTFLOW_HPP
#ifndef ATCODER_SCC_HPP
#define ATCODER_SCC_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
struct scc_graph {
 public:
  scc_graph() : internal(0) {}
  scc_graph(int n) : internal(n) {}
  void add_edge(int from, int to) {
    int n = internal.num_vertices();
    assert(0 <= from && from < n);
    assert(0 <= to && to < n);
    internal.add_edge(from, to);
  }
  std::vector<std::vector<int>> scc() { return internal.scc(); }

 private:
  internal::scc_graph internal;
};
}  // namespace atcoder
#endif  // ATCODER_SCC_HPP
#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()>
struct segtree {
 public:
  segtree() : segtree(0) {}
  segtree(int n) : segtree(std::vector<S>(n, e())) {}
  segtree(const std::vector<S>& v) : _n(int(v.size())) {
    log = internal::ceil_pow2(_n);
    size = 1 << log;
    d = std::vector<S>(2 * size, e());
    for (int i = 0; i < _n; i++) d[size + i] = v[i];
    for (int i = size - 1; i >= 1; i--) {
      update(i);
    }
  }
  void set(int p, S x) {
    assert(0 <= p && p < _n);
    p += size;
    d[p] = x;
    for (int i = 1; i <= log; i++) update(p >> i);
  }
  S get(int p) {
    assert(0 <= p && p < _n);
    return d[p + size];
  }
  S prod(int l, int r) {
    assert(0 <= l && l <= r && r <= _n);
    S sml = e(), smr = e();
    l += size;
    r += size;
    while (l < r) {
      if (l & 1) sml = op(sml, d[l++]);
      if (r & 1) smr = op(d[--r], smr);
      l >>= 1;
      r >>= 1;
    }
    return op(sml, smr);
  }
  S all_prod() { return d[1]; }
  template <bool (*f)(S)>
  int max_right(int l) {
    return max_right(l, [](S x) { return f(x); });
  }
  template <class F>
  int max_right(int l, F f) {
    assert(0 <= l && l <= _n);
    assert(f(e()));
    if (l == _n) return _n;
    l += size;
    S sm = e();
    do {
      while (l % 2 == 0) l >>= 1;
      if (!f(op(sm, d[l]))) {
        while (l < size) {
          l = (2 * l);
          if (f(op(sm, d[l]))) {
            sm = op(sm, d[l]);
            l++;
          }
        }
        return l - size;
      }
      sm = op(sm, d[l]);
      l++;
    } while ((l & -l) != l);
    return _n;
  }
  template <bool (*f)(S)>
  int min_left(int r) {
    return min_left(r, [](S x) { return f(x); });
  }
  template <class F>
  int min_left(int r, F f) {
    assert(0 <= r && r <= _n);
    assert(f(e()));
    if (r == 0) return 0;
    r += size;
    S sm = e();
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!f(op(d[r], sm))) {
        while (r < size) {
          r = (2 * r + 1);
          if (f(op(d[r], sm))) {
            sm = op(d[r], sm);
            r--;
          }
        }
        return r + 1 - size;
      }
      sm = op(d[r], sm);
    } while ((r & -r) != r);
    return 0;
  }

 private:
  int _n, size, log;
  std::vector<S> d;
  void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
}  // namespace atcoder
#endif  // ATCODER_SEGTREE_HPP
#ifndef ATCODER_STRING_HPP
#define ATCODER_STRING_HPP 1
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
  int n = int(s.size());
  std::vector<int> sa(n);
  std::iota(sa.begin(), sa.end(), 0);
  std::sort(sa.begin(), sa.end(), [&](int l, int r) {
    if (l == r) return false;
    while (l < n && r < n) {
      if (s[l] != s[r]) return s[l] < s[r];
      l++;
      r++;
    }
    return l == n;
  });
  return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
  int n = int(s.size());
  std::vector<int> sa(n), rnk = s, tmp(n);
  std::iota(sa.begin(), sa.end(), 0);
  for (int k = 1; k < n; k *= 2) {
    auto cmp = [&](int x, int y) {
      if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
      int rx = x + k < n ? rnk[x + k] : -1;
      int ry = y + k < n ? rnk[y + k] : -1;
      return rx < ry;
    };
    std::sort(sa.begin(), sa.end(), cmp);
    tmp[sa[0]] = 0;
    for (int i = 1; i < n; i++) {
      tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
    }
    std::swap(tmp, rnk);
  }
  return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
  int n = int(s.size());
  if (n == 0) return {};
  if (n == 1) return {0};
  if (n == 2) {
    if (s[0] < s[1]) {
      return {0, 1};
    } else {
      return {1, 0};
    }
  }
  if (n < THRESHOLD_NAIVE) {
    return sa_naive(s);
  }
  if (n < THRESHOLD_DOUBLING) {
    return sa_doubling(s);
  }
  std::vector<int> sa(n);
  std::vector<bool> ls(n);
  for (int i = n - 2; i >= 0; i--) {
    ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
  }
  std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
  for (int i = 0; i < n; i++) {
    if (!ls[i]) {
      sum_s[s[i]]++;
    } else {
      sum_l[s[i] + 1]++;
    }
  }
  for (int i = 0; i <= upper; i++) {
    sum_s[i] += sum_l[i];
    if (i < upper) sum_l[i + 1] += sum_s[i];
  }
  auto induce = [&](const std::vector<int>& lms) {
    std::fill(sa.begin(), sa.end(), -1);
    std::vector<int> buf(upper + 1);
    std::copy(sum_s.begin(), sum_s.end(), buf.begin());
    for (auto d : lms) {
      if (d == n) continue;
      sa[buf[s[d]]++] = d;
    }
    std::copy(sum_l.begin(), sum_l.end(), buf.begin());
    sa[buf[s[n - 1]]++] = n - 1;
    for (int i = 0; i < n; i++) {
      int v = sa[i];
      if (v >= 1 && !ls[v - 1]) {
        sa[buf[s[v - 1]]++] = v - 1;
      }
    }
    std::copy(sum_l.begin(), sum_l.end(), buf.begin());
    for (int i = n - 1; i >= 0; i--) {
      int v = sa[i];
      if (v >= 1 && ls[v - 1]) {
        sa[--buf[s[v - 1] + 1]] = v - 1;
      }
    }
  };
  std::vector<int> lms_map(n + 1, -1);
  int m = 0;
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) {
      lms_map[i] = m++;
    }
  }
  std::vector<int> lms;
  lms.reserve(m);
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) {
      lms.push_back(i);
    }
  }
  induce(lms);
  if (m) {
    std::vector<int> sorted_lms;
    sorted_lms.reserve(m);
    for (int v : sa) {
      if (lms_map[v] != -1) sorted_lms.push_back(v);
    }
    std::vector<int> rec_s(m);
    int rec_upper = 0;
    rec_s[lms_map[sorted_lms[0]]] = 0;
    for (int i = 1; i < m; i++) {
      int l = sorted_lms[i - 1], r = sorted_lms[i];
      int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
      int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
      bool same = true;
      if (end_l - l != end_r - r) {
        same = false;
      } else {
        while (l < end_l) {
          if (s[l] != s[r]) {
            break;
          }
          l++;
          r++;
        }
        if (l == n || s[l] != s[r]) same = false;
      }
      if (!same) rec_upper++;
      rec_s[lms_map[sorted_lms[i]]] = rec_upper;
    }
    auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
    for (int i = 0; i < m; i++) {
      sorted_lms[i] = lms[rec_sa[i]];
    }
    induce(sorted_lms);
  }
  return sa;
}
}  // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
  assert(0 <= upper);
  for (int d : s) {
    assert(0 <= d && d <= upper);
  }
  auto sa = internal::sa_is(s, upper);
  return sa;
}
template <class T>
std::vector<int> suffix_array(const std::vector<T>& s) {
  int n = int(s.size());
  std::vector<int> idx(n);
  iota(idx.begin(), idx.end(), 0);
  sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
  std::vector<int> s2(n);
  int now = 0;
  for (int i = 0; i < n; i++) {
    if (i && s[idx[i - 1]] != s[idx[i]]) now++;
    s2[idx[i]] = now;
  }
  return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
  int n = int(s.size());
  assert(n >= 1);
  std::vector<int> rnk(n);
  for (int i = 0; i < n; i++) {
    rnk[sa[i]] = i;
  }
  std::vector<int> lcp(n - 1);
  int h = 0;
  for (int i = 0; i < n; i++) {
    if (h > 0) h--;
    if (rnk[i] == 0) continue;
    int j = sa[rnk[i] - 1];
    for (; j + h < n && i + h < n; h++) {
      if (s[j + h] != s[i + h]) break;
    }
    lcp[rnk[i] - 1] = h;
  }
  return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T>
std::vector<int> z_algorithm(const std::vector<T>& s) {
  int n = int(s.size());
  if (n == 0) return {};
  std::vector<int> z(n);
  z[0] = 0;
  for (int i = 1, j = 0; i < n; i++) {
    int& k = z[i];
    k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
    while (i + k < n && s[k] == s[i + k]) k++;
    if (j + z[j] < i + z[i]) j = i;
  }
  z[0] = n;
  return z;
}
std::vector<int> z_algorithm(const std::string& s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return z_algorithm(s2);
}
}  // namespace atcoder
#endif  // ATCODER_STRING_HPP
#ifndef ATCODER_TWOSAT_HPP
#define ATCODER_TWOSAT_HPP 1
#include <cassert>
#include <vector>
namespace atcoder {
// Reference:
// B. Aspvall, M. Plass, and R. Tarjan,
// A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean
// Formulas
struct two_sat {
 public:
  two_sat() : _n(0), scc(0) {}
  two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}
  void add_clause(int i, bool f, int j, bool g) {
    assert(0 <= i && i < _n);
    assert(0 <= j && j < _n);
    scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
    scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
  }
  bool satisfiable() {
    auto id = scc.scc_ids().second;
    for (int i = 0; i < _n; i++) {
      if (id[2 * i] == id[2 * i + 1]) return false;
      _answer[i] = id[2 * i] < id[2 * i + 1];
    }
    return true;
  }
  std::vector<bool> answer() { return _answer; }

 private:
  int _n;
  std::vector<bool> _answer;
  internal::scc_graph scc;
};
}  // namespace atcoder
#endif  // ATCODER_TWOSAT_HPP

using namespace atcoder;

int main() {
  ll N, K;
  io.read(N, K);
  vector<ll> A(N);
  io.read(A);
  vector<vector<vector<modint>>> dp(
      N + 1, vector<vector<modint>>(N + 1, vector<modint>(10001)));
  dp[0][0][0] = 1;
  REP(i, N) {
    REP(j, N) REP(k, 10001) dp[i + 1][j][k] = dp[i][j][k];
    REP(j, N) {
      REP(k, 10001 - A[i]) {
        dp[i + 1][j + 1][k + A[i]] += dp[i][j][k];
        // debug(i + 1, j + 1, k + A[i], dp[i + 1][j + 1][k + A[i]].x);
      }
    }
  }
  modint ans = 0;
  FOR(j, 1, N + 1) REP(k, 10001) if (j * K <= k) ans += dp[N][j][k];
  io.writeln(ans.x);
  return 0;
}
0