結果

問題 No.1239 Multiplication -2
ユーザー LayCurse
提出日時 2020-09-25 21:56:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 17,668 bytes
コンパイル時間 2,573 ms
コンパイル使用メモリ 227,748 KB
最終ジャッジ日時 2025-01-14 20:55:06
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 10 WA * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
#define MD_PRIMITIVE_ROOT (3U)
#define PI 3.14159265358979323846
void*wmem;
char memarr[96000000];
template<class S, class T> inline S max_L(S a,T b){
return a>=b?a:b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
struct fft_pnt{
double x;
double y;
fft_pnt(void){
}
fft_pnt(double a, double b){
x = a;
y = b;
}
void set(double a, double b){
x = a;
y = b;
}
fft_pnt& operator+=(fft_pnt a){
x+=a.x;
y+=a.y;
return *this;
}
fft_pnt& operator-=(fft_pnt a){
x-=a.x;
y-=a.y;
return *this;
}
fft_pnt& operator*=(fft_pnt a){
fft_pnt p = *this;
x = p.x*a.x-p.y*a.y;
y = p.x*a.y+p.y*a.x;
return *this;
}
fft_pnt operator+(fft_pnt a){
return fft_pnt(*this) += a;
}
fft_pnt operator-(fft_pnt a){
return fft_pnt(*this) -= a;
}
fft_pnt operator*(fft_pnt a){
return fft_pnt(*this) *= a;
}
}
;
void fft_L(int n, fft_pnt x[], void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
double theta = 2*PI / n;
double tmp;
fft_pnt w1;
fft_pnt w2;
fft_pnt w3;
fft_pnt a;
fft_pnt b;
fft_pnt c;
fft_pnt d;
fft_pnt aa;
fft_pnt bb;
fft_pnt cc;
fft_pnt dd;
fft_pnt*y = (fft_pnt*)mem;
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
for(i=(0);i<(n1);i++){
w1 = fft_pnt(cos(i*theta),-sin(i*theta));
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = b - d;
tmp = dd.y;
dd.y = dd.x;
dd.x = -tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb - dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb + dd);
}
}
n /= 4;
step *= 4;
theta *= 4;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
theta *= 2;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void fftinv_L(int n, fft_pnt x[], void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
double theta = 2*PI / n;
double tmp;
fft_pnt w1;
fft_pnt w2;
fft_pnt w3;
fft_pnt a;
fft_pnt b;
fft_pnt c;
fft_pnt d;
fft_pnt aa;
fft_pnt bb;
fft_pnt cc;
fft_pnt dd;
fft_pnt*y = (fft_pnt*)mem;
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
for(i=(0);i<(n1);i++){
w1 = fft_pnt(cos(i*theta),sin(i*theta));
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = b - d;
tmp = dd.y;
dd.y = dd.x;
dd.x = -tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb + dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb - dd);
}
}
n /= 4;
step *= 4;
theta *= 4;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
theta *= 2;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void convolution_L(double A[], int As, double B[], int Bs, double res[], int Rs, void *mem = wmem){
int i;
int n;
int n2;
double mul;
fft_pnt*a;
fft_pnt*b;
n =max_L(As+Bs, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
walloc1d(&b, n2, &mem);
for(i=(0);i<(As);i++){
a[i].set(A[i], 0);
}
int KaFyNJB9 = n2;
for(i=(As);i<(KaFyNJB9);i++){
a[i].set(0,0);
}
for(i=(0);i<(Bs);i++){
b[i].set(B[i], 0);
}
int jO2HaRTX = n2;
for(i=(Bs);i<(jO2HaRTX);i++){
b[i].set(0,0);
}
fft_L(n2, a, mem);
fft_L(n2, b, mem);
for(i=(0);i<(n2);i++){
a[i] *= b[i];
}
fftinv_L(n2, a, mem);
mul = 1.0 / n2;
for(i=(0);i<(Rs);i++){
res[i] = a[i].x * mul;
}
}
void convolution_L(double A[], int As, double res[], int Rs, void *mem = wmem){
int i;
int n;
int n2;
double mul;
fft_pnt*a;
n =max_L(As+As, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
for(i=(0);i<(As);i++){
a[i].set(A[i], 0);
}
int eNrGll8F = n2;
for(i=(As);i<(eNrGll8F);i++){
a[i].set(0,0);
}
fft_L(n2, a, mem);
for(i=(0);i<(n2);i++){
a[i] *= a[i];
}
fftinv_L(n2, a, mem);
mul = 1.0 / n2;
for(i=(0);i<(Rs);i++){
res[i] = a[i].x * mul;
}
}
void fft_L(int n, Modint x[], Modint root, void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
Modint w1;
Modint w2;
Modint w3;
Modint a;
Modint b;
Modint c;
Modint d;
Modint aa;
Modint bb;
Modint cc;
Modint dd;
Modint tmp;
Modint*y;
walloc1d(&y, n, &mem);
tmp = root.pw((MD-1)/4*3);
root = root.pw((MD-1)/n);
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
w1.val = 1;
for(i=(0);i<(n1);i++){
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = (b - d) * tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb - dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb + dd);
}
w1 *= root;
}
n /= 4;
step *= 4;
root *= root;
root *= root;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
root *= root;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void fftinv_L(int n, Modint x[], Modint root, void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
Modint w1;
Modint w2;
Modint w3;
Modint a;
Modint b;
Modint c;
Modint d;
Modint aa;
Modint bb;
Modint cc;
Modint dd;
Modint tmp;
Modint*y;
walloc1d(&y, n, &mem);
root = root.inverse();
tmp = root.pw((MD-1)/4);
root = root.pw((MD-1)/n);
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
w1.val = 1;
for(i=(0);i<(n1);i++){
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = (b - d) * tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb + dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb - dd);
}
w1 *= root;
}
n /= 4;
step *= 4;
root *= root;
root *= root;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
root *= root;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void convolution_L(Modint A[], int As, Modint B[], int Bs, Modint res[], int Rs, Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
int i;
int n;
int n2;
Modint*a;
Modint*b;
Modint r;
n =max_L(As+Bs, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
walloc1d(&b, n2, &mem);
for(i=(0);i<(As);i++){
a[i] = A[i];
}
int CnS5KYSU = n2;
for(i=(As);i<(CnS5KYSU);i++){
a[i].val = 0;
}
for(i=(0);i<(Bs);i++){
b[i] = B[i];
}
int YtJecZqT = n2;
for(i=(Bs);i<(YtJecZqT);i++){
b[i].val = 0;
}
fft_L(n2, a, root, mem);
fft_L(n2, b, root, mem);
for(i=(0);i<(n2);i++){
a[i] *= b[i];
}
fftinv_L(n2, a, root, mem);
r = Modint(n2).inverse();
for(i=(0);i<(Rs);i++){
res[i] = a[i] * r;
}
}
void convolution_L(Modint A[], int As, Modint res[], int Rs, Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
int i;
int n;
int n2;
Modint*a;
Modint r;
n =max_L(2*As, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
for(i=(0);i<(As);i++){
a[i] = A[i];
}
int jIDgiLP1 = n2;
for(i=(As);i<(jIDgiLP1);i++){
a[i].val = 0;
}
fft_L(n2, a, root, mem);
for(i=(0);i<(n2);i++){
a[i] *= a[i];
}
fftinv_L(n2, a, root, mem);
r = Modint(n2).inverse();
for(i=(0);i<(Rs);i++){
res[i] = a[i]*r;
}
}
int N;
int A[200000];
int ls;
Modint lp[200000+1];
Modint lm[200000+1];
int rs;
Modint rp[200000+1];
Modint rm[200000+1];
Modint c1[200000+1];
Modint c2[200000+1];
int main(){
wmem = memarr;
int i;
int j;
int k;
int ad;
Modint res = 0;
rd(N);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
}
}
for(i=(0);i<(N);i++){
if(A[i]==2 || A[i]==-2){
ls = 1;
lp[0] = 1;
lm[0] = 0;
j = i;
for(;;){
j--;
if(j < 0 || A[j] == 0 || A[j] == 2 || A[j] == -2){
break;
}
lp[ls] = lp[ls-1];
lm[ls] = lm[ls-1];
if(A[j]==-1){
swap(lp[ls], lm[ls]);
}
ls++;
}
if(ls > 1 && j==-1){
lp[ls-2] += lp[ls-1];
lm[ls-2] += lm[ls-1];
ls--;
}
rs = 1;
rp[0] = 1;
rm[0] = 0;
j = i;
for(;;){
j++;
if(j >= N || A[j] == 0 || A[j] == 2 || A[j] == -2){
break;
}
rp[ls] = rp[rs-1];
rm[ls] = rm[rs-1];
if(A[j]==-1){
swap(rp[ls], rm[ls]);
}
rs++;
}
if(rs > 1 && j==N){
rp[ls-2] += rp[rs-1];
rm[ls-2] += rm[rs-1];
rs--;
}
if(A[i]==2){
convolution_L(lp, ls, rm, rs, c1, ls+rs);
convolution_L(lm, ls, rp, rs, c2, ls+rs);
}
else{
convolution_L(lp, ls, rp, rs, c1, ls+rs);
convolution_L(lm, ls, rm, rs, c2, ls+rs);
}
ad = 0;
if(i==0){
ad++;
}
if(i==N-1){
ad++;
}
for(k=(0);k<(ls+rs);k++){
c1[k] += c2[k];
}
for(k=(0);k<(ls+rs);k++){
if(c1[k] != 0){
res += c1[k] * ((pow_L(Modint(2),(N-3-k+ad))));
}
}
}
}
res /=(pow_L(Modint(2),(N - 1)));
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200920-1
// --- original code ---
// #define MD 998244353
// int N, A[2d5];
//
// int ls; Modint lp[2d5+1], lm[2d5+1];
// int rs; Modint rp[2d5+1], rm[2d5+1];
// Modint c1[2d5+1], c2[2d5+1];
//
// {
// int i, j, k, ad;
// Modint res = 0;
// rd(N,A(N));
//
// rep(i,N) if(A[i]==2 || A[i]==-2){
// ls = 1;
// lp[0] = 1; lm[0] = 0;
// j = i;
// for(;;){
// j--;
// if(j < 0 || A[j] == 0 || A[j] == 2 || A[j] == -2) break;
// lp[ls] = lp[ls-1];
// lm[ls] = lm[ls-1];
// if(A[j]==-1) swap(lp[ls], lm[ls]);
// ls++;
// }
// if(ls > 1 && j==-1){
// lp[ls-2] += lp[ls-1];
// lm[ls-2] += lm[ls-1];
// ls--;
// }
//
// rs = 1;
// rp[0] = 1; rm[0] = 0;
// j = i;
// for(;;){
// j++;
// if(j >= N || A[j] == 0 || A[j] == 2 || A[j] == -2) break;
// rp[ls] = rp[rs-1];
// rm[ls] = rm[rs-1];
// if(A[j]==-1) swap(rp[ls], rm[ls]);
// rs++;
// }
// if(rs > 1 && j==N){
// rp[ls-2] += rp[rs-1];
// rm[ls-2] += rm[rs-1];
// rs--;
// }
//
// //wt("i = ", i, A[i]);
// //wt("lp", lp(ls));
// //wt("lm", lm(ls));
// //wt("rp", rp(rs));
// //wt("rm", rm(rs));
//
// if(A[i]==2){
// convolution(lp, ls, rm, rs, c1, ls+rs);
// convolution(lm, ls, rp, rs, c2, ls+rs);
// } else {
// convolution(lp, ls, rp, rs, c1, ls+rs);
// convolution(lm, ls, rm, rs, c2, ls+rs);
// }
//
// ad = 0;
// if(i==0) ad++;
// if(i==N-1) ad++;
//
// rep(k,ls+rs) c1[k] += c2[k];
// //wt("c", c1(ls+rs));
// rep(k,ls+rs) if(c1[k] != 0){
// res += c1[k] * (Modint(2) ** (N-3-k+ad));
// }
// //wt("res", res);
// }
//
// res /= Modint(2) ** (N - 1);
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0