結果
問題 | No.1239 Multiplication -2 |
ユーザー | Enjapma_kyopro |
提出日時 | 2020-09-25 22:22:39 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 88 ms / 2,000 ms |
コード長 | 20,001 bytes |
コンパイル時間 | 1,148 ms |
コンパイル使用メモリ | 89,776 KB |
実行使用メモリ | 9,656 KB |
最終ジャッジ日時 | 2024-06-28 06:45:24 |
合計ジャッジ時間 | 3,282 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 3 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 19 ms
5,376 KB |
testcase_16 | AC | 30 ms
5,760 KB |
testcase_17 | AC | 61 ms
9,396 KB |
testcase_18 | AC | 81 ms
9,472 KB |
testcase_19 | AC | 56 ms
9,524 KB |
testcase_20 | AC | 63 ms
9,656 KB |
testcase_21 | AC | 88 ms
7,808 KB |
testcase_22 | AC | 61 ms
7,680 KB |
testcase_23 | AC | 66 ms
7,596 KB |
testcase_24 | AC | 45 ms
6,528 KB |
testcase_25 | AC | 10 ms
6,016 KB |
testcase_26 | AC | 47 ms
6,272 KB |
testcase_27 | AC | 26 ms
5,376 KB |
testcase_28 | AC | 82 ms
8,580 KB |
testcase_29 | AC | 88 ms
9,172 KB |
testcase_30 | AC | 32 ms
5,760 KB |
testcase_31 | AC | 48 ms
6,964 KB |
testcase_32 | AC | 77 ms
7,936 KB |
testcase_33 | AC | 53 ms
6,528 KB |
testcase_34 | AC | 50 ms
6,272 KB |
testcase_35 | AC | 27 ms
5,376 KB |
testcase_36 | AC | 24 ms
5,376 KB |
ソースコード
#include <iostream> #include <vector> #include <queue> #include <algorithm> #include <map> #include <set> #include <unistd.h> #include <stdlib.h> #include <cassert> #include <utility> namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using namespace std; using namespace atcoder; using mint = modint998244353; // using mint = modint1000000007; typedef long long ll; typedef pair<ll, ll> P; typedef pair<P, ll> T; const ll INF = 2e18; const ll fact_table = 3200008; priority_queue <ll> pql; priority_queue <P> pqp; priority_queue <P> bag; //big priority queue priority_queue <ll, vector<ll>, greater<ll> > pqls; priority_queue <P, vector<P>, greater<P> > pqps; //small priority queue //top pop ll dx[8] = {1, 0, -1, 0, 1, 1, -1, -1}; ll dy[8] = {0, 1, 0, -1, 1, -1, -1, 1}; //↓,→,↑,← /* #define endl "\n" #ifdef ENJAPMA #undef endl #endif */ #define p(x) cout<<x<<endl; #define el cout<<endl; #define pe(x) cout<<x<<" "; #define ps(x) cout<<fixed<<setprecision(25)<<x<<endl; #define pu(x) cout<<(x); #define pb push_back #define lb lower_bound #define ub upper_bound #define CLEAR(a) a = decltype(a)(); #define pc(x) cout << x << ","; #define rep(i, n) for (ll i = 0; i < (n); i ++) typedef vector<ll> vec; typedef vector<vector<ll>> mat; // const ll mod = 998244353ll; const ll mod = 1000000007ll; ll mypow(ll a, ll b, ll m = mod) {ll x = 1; while (b) {while (!(b & 1)) {(a *= a) %= m; b >>= 1;}(x *= a) %= m; b--;} return x;} vec readvec(ll read) { vec res(read); for (int i = 0; i < read; i++) { cin >> res[i]; } return res;} void YES(bool cond) { if (cond) { p("YES");} else { p("NO");} return;} void Yes(bool cond) { if (cond) { p("Yes");} else { p("No");} return;} void line() { p("--------------------"); return;} /* ll fact[fact_table + 5], rfact[fact_table + 5]; void c3_init() { fact[0] = rfact[0] = 1; for (ll i = 1; i <= fact_table; i++) { fact[i] = (fact[i - 1] * i) % mod; } rfact[fact_table] = mypow(fact[fact_table], mod - 2, mod); for (ll i = fact_table; i >= 1; i--) { rfact[i - 1] = rfact[i] * i; rfact[i - 1] %= mod; } return; } ll c3(ll n, ll r) { return (((fact[n] * rfact[r]) % mod ) * rfact[n - r]) % mod; } */ bool multicase = false; void print(mint val){ for(int i=1;i<=10;i++){ for(int j=1;j<=10;j++){ mint v = mint(i) / mint(j); if (v == val) { pe(j);pe("分の");p(i); return; } } } } void solve() { ll n; cin >> n; vec a(n); for(int i=0;i<n;i++){ cin >> a[i]; } vec b(n), c(n); // 2を見たことがある bool check = false; ll left = 0; mint ans = 0; mint pos = 0, neg = 0; int now = 1; bool first = true, last = false; for(int i=0;i<n;i++){ if (i + 1 == n) last = true; if (a[i] == 0) { // 問題を切る check = false; first = false; b.clear(), c.clear(); left = i + 1; } else if (abs(a[i]) == 1) { if (!check) { // まだ2を見たことがない b.pb(a[i]); c.pb(a[i]); } else { pos /= mint(2); neg /= mint(2); if (a[i] < 0) { now *= -1; } if (now == 1) { ans += neg; if (last) ans += neg; } else { ans += pos; if (last) ans += pos; } } } else if (abs(a[i]) == 2) { now = 1; check = true; b.clear(), c.clear(); for(int j=left;j<=i;j++){ b.pb(a[j]); c.pb(a[j]); } left = i + 1; reverse(b.begin(), b.end()); reverse(c.begin(), c.end()); int sign = 1; pos = neg = mint(0); mint norm = mint(1) / mint(4); for(int i=0;i<b.size();i++){ if (b[i] < 0) { sign *= -1; } if (i + 1 == b.size() && first) { first = false; norm *= mint(2); } if (sign == 1) { pos += norm; } else { neg += norm; } norm /= mint(2); } ans += neg; if (last) ans += neg; } // print(ans); // p(ans.val()); } p(ans.val()); return; } int main() { // init(); ios::sync_with_stdio(false); cin.tie(nullptr); ll q, testcase = 1; if (multicase) { cin >> q; } else { q = 1; } while (q--) { // pu("Case ");pu("#");pu(testcase);pu(": "); solve(); testcase++; } // solve(); return 0; }