結果

問題 No.1240 Or Sum of Xor Pair
ユーザー tokusakurai
提出日時 2020-09-25 23:22:27
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 4,045 bytes
コンパイル時間 2,019 ms
コンパイル使用メモリ 207,640 KB
最終ジャッジ日時 2025-01-14 21:38:41
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 18 WA * 1 TLE * 11
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define elif else if
#define sp(x) fixed << setprecision(x)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
const double pi = acos(-1.0);
const double EPS = 1e-10;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};

template<typename Monoid>
struct Segment_Tree{
    vector<Monoid> seg;
    const Monoid e;
    const int n;

    Monoid f(const Monoid &a, const Monoid &b) const{
        Monoid ret(18, 0);
        rep(i, 18) ret[i] = a[i]+b[i];
        return ret;
    }
    
    Segment_Tree(int N, const Monoid &e) : e(e), n(1<<(32-__builtin_clz(N-1))){
        seg.assign(2*n, e);
    }
    
    void change(int i, const Monoid &x){
        seg[i += n] = x;
        while(i > 0){
            i /= 2;
            seg[i] = f(seg[2*i], seg[2*i+1]);
        }
    }

    Monoid query(int a, int b, int i, int l, int r) const{
        if(a >= r || b <= l) return e;
        if(a <= l && r <= b) return seg[i];
        Monoid vl = query(a, b, 2*i, l, (l+r)/2);
        Monoid vr = query(a, b, 2*i+1, (l+r)/2, r);
        return f(vl, vr);
    }

    Monoid query(int a, int b) {return query(a, b, 1, 0, n);}

    bool check(const Monoid &a, const Monoid & b) const {return a <= b;}

    int find_first(int a, int b, const Monoid &x, int i, int l, int r) const{
        if(a >= b || a >= r || b <= l || !check(seg[i], x)) return -1;
        if(r-l == 1) return l;
        int m = (l+r)/2;
        if(b <= m) return find_first(a, b, x, 2*i, l, m);
        if(a >= m) return find_first(a, b, x, 2*i+1, m, r);
        int tmp = find_first(a, m, x, 2*i, l, m);
        return (tmp == -1? find_first(m, b, x, 2*i+1, m, r) : tmp);
    }

    int find_first(int a, int b, const Monoid &x) const {return find_first(a, b, x, 1, 0, n);}

    int find_last(int a, int b, const Monoid &x, int i, int l, int r) const{
        if(a >= b || a >= r || b <= l || !check(seg[i], x)) return -1;
        if(r-l == 1) return l;
        int m = (l+r)/2;
        if(b <= m) return find_last(a, b, x, 2*i, l, m);
        if(a >= m) return find_last(a, b, x, 2*i+1, m, r);
        int tmp = find_last(m, b, x, 2*i+1, m, r);
        return (tmp == -1? find_last(a, m, x, 2*i, l, m) : tmp);
    }

    int find_last(int a, int b, const Monoid &x) const {return find_last(a, b, x, 1, 0, n);}

    Monoid operator [] (int i) const {return seg[n+i];}
    
    void clear(){
        fill(all(seg), e);
    }
};

int main(){
    int N, X;
    cin >> N >> X;
    ll ans = 0;
    vector<int> a(N);
    vector<int> cnt(1<<18, 0);
    rep(i, N){
        cin >> a[i];
        ans -= a[i], cnt[a[i]]++;
    }
    Segment_Tree<vector<int>> seg(N, vector<int>(18, 0));
    sort(all(a));
    rep(i, N){
        vector<int> tmp(18);
        rep(j, 18) tmp[j] = (a[i]>>j)&1;
        seg.change(i, tmp);
    }
    rep(i, 1<<18){
        if(cnt[i] == 0) continue;
        int y = 0;
        rep3(j, 17, 0){
            if((X>>j)&1){
                if((i>>j)&1) y |= 1<<j;
                int l = lower_bound(all(a), y)-a.begin();
                int r = lower_bound(all(a), y+(1<<j))-a.begin();
                vector<int> tmp = seg.query(l, r);
                rep(k, 18){
                    if((i>>k)&1) ans += (1LL<<k)*(r-l)*cnt[i];
                    else ans += (1LL<<k)*tmp[k]*cnt[i];
                }
                y ^= 1<<j;
            }
            else{
                if((i>>j)&1) y |= 1<<j;
            }
        }
    }
    cout << ans/2 << endl;
}
0